Skip to main content
Log in

Direct modulation by Ca2+–calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OLFACTORY receptor neurons depolarize in response to odorant stimulation of their sensory cilia1–3. One transduction mechanism involves a G-protein-mediated increase in adenylate cyclase activity4–8, raising the internal cyclic AMP concentration to open a cyclic nucleotide-activated cation channel on the plasma membrane9–14. An influx of Ca2+ through this channel, which is permeable to both monovalent and divalent cations, triggers olfactory adaptation15. Previous work has indicated that at least part of this Ca2+ -mediated adaptation resides in the channel itself15–17, but the mechanism remains unclear and controversial16–18. Here we use the cloned channel from rat19 expressed in a cell line and the native channel from rat olfactory receptor cells to show that Ca2+ reduces the apparent affinity of the channel for cAMP by up to 20-fold in the presence of calmodulin, an abundant protein in olfactory cilia20. This decrease in apparent affinity appears to involve a direct interaction between Ca2+–calmodulin and the channel, and it can reduce the activation of the channel by cAMP by up to a few hundred-fold, suggesting that it may be a key component of the Ca2+ -triggered olfactory adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Firestein, S. & Werblin, F. Science 244, 79–82 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Kurahashi, T. J. Physiol., Lond. 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  3. Lowe, G. & Gold, G. H. J. Physiol., Lond. 442, 147–168 (1991).

    Article  CAS  Google Scholar 

  4. Pace, U., Hanski, E., Salomon, Y. & Lancet, D. Nature 316, 255–258 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  Google Scholar 

  6. Jones, D. T. & Reed, R. R. Science 244, 790–795 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Bakalyar, H. A. & Reed, R. R. Science 250, 1403–1406 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Boekhoff, I., Tareilus, E., Strotmann, J. & Breer, H. EMBO J. 9, 2453–2458 (1990).

    Article  CAS  Google Scholar 

  9. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Kurahashi, T. J. Physiol., Lond. 430, 355–371 (1990).

    Article  CAS  Google Scholar 

  11. Firestein, S., Darrow, B. & Shepherd, G. M. Neuron 6, 825–835 (1991).

    Article  CAS  Google Scholar 

  12. Frings, S. & Lindemann, B. J. gen. Physiol. 97, 1–16 (1991).

    Article  CAS  Google Scholar 

  13. Frings, S., Lynch, J. W. & Lindemann, B. J. gen. Physiol. 100, 45–67 (1992).

    Article  CAS  Google Scholar 

  14. Lowe, G. & Gold, G. H. J. Physiol., Lond. 462, 175–196 (1993).

    Article  CAS  Google Scholar 

  15. Kurahashi, T. & Shibuya, T. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  16. Kramer, R. H. & Siegelbaum, S. A. Neuron 9, 897–906 (1992).

    Article  CAS  Google Scholar 

  17. Zufall, F., Shepherd, G. M. & Firestein, S. Proc. R. Soc. Lond. B246, 225–230 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Kleene, S. J. J. Membr. Biol. 131, 237–243 (1993).

    Article  CAS  Google Scholar 

  19. Dhallan, R. S., Yau, K.-W., Schrader, K. A. & Reed, R. R. Nature 347, 184–187 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Anholt, R. R. H. & Rivers, A. M. Biochemistry 29, 4049–4054 (1990).

    Article  CAS  Google Scholar 

  21. Chen, T.-Y. et al. Nature 362, 764–767 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Hsu, Y.-T. & Molday, R. S. Nature 361, 76–79 (1992).

    Article  ADS  Google Scholar 

  23. Klee, C. B. & Vanaman, T. C. Adv. Prot. Chem. 35, 213–321 (1982).

    CAS  Google Scholar 

  24. Jaworsky, D. E., Matsuzaki, O., Borisy-Rudin, F. F. & Ronnett, G. V. J. Neurosci (in the press).

  25. Borisy, F. F. et al. J. Neurosci. 12, 915–923 (1992).

    Article  CAS  Google Scholar 

  26. Kurahashi, T. & Yau, K.-W. Nature 363, 71–74 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Lowe, G., & Gold, G. H. Nature 366, 283–286 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Kleene, S. J. & Gesteland, R. C. J. Neurosci. 11, 3624–3629 (1991).

    Article  CAS  Google Scholar 

  29. Kleene, S. J. Br. J. Pharmac. 111, 469–472 (1994).

    Article  CAS  Google Scholar 

  30. Bradley, J., Uezono, Y., Davidson, N. & Lester, H. Soc. Neurosci. Abstr. 18, 596 (1992).

    Google Scholar 

  31. Liman, E. R. & Buck, L. B. Biophys. J. 66, A350 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, TY., Yau, KW. Direct modulation by Ca2+–calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994). https://doi.org/10.1038/368545a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368545a0

  • Springer Nature Limited

This article is cited by

Navigation