Skip to main content
Log in

A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ABERRANT ion channel activity plays a causative role in several human disorders1–3. Inappropriately regulated channel activity also appears to be the basis for neurodegeneration induced by dominant mutations of Caenorhabditis elegans mec-4 (mec-4(d)), a member of the degenerin gene family postulated to encode a subunit of a mechanosensory channel4. The degenerin gene family has been defined by two C. elegans genes, mec-4 and deg-1 (ref. 5), which can mutate to gain-of-function alleles that induce degeneration of specific groups of neurons. A related mammalian gene, rat α-rENaC, induces an amiloride-sensitive Na+ current when introduced to Xenopus oocytes 6, strongly suggesting that degenerin genes encode ion channel proteins. Deduced amino-acid sequences of the degenerins include two predicted membrane-spanning domains6,7. Here we show that conserved amino acids within the second membrane-spanning domain (MSDII) are critical for MEC-4 activity and that specific substitutions within MSDII, whether encoded in cis or in trans to a mec-4(d) mutation, block or delay the onset of degeneration. Remarkably, MSDII from two other family members, C. elegans deg-1 (ref. 5) and rat α-rENaC (ref. 6), can functionally substitute for MEC-4 MSDII in chimaeric proteins. Our results support a structural model for a mechanosensory channel in which multiple MEC-4 subunits are oriented such that MSDII lines the channel pore, and a neurodegeneration model in which aberrant ion flow through this channel is a key event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ptacek, L. J. et al. Ann. Neurol. 33, 300–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Koch, M. C. et al. Science 257, 797–800 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Sheppard, D. N. et al. Nature 362, 160–164 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Driscoll, M. & Chalfie, M. Nature 349, 588–593 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Chalfie, M. & Wolinsky, E. Nature 345, 410–416 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Canessa, C. M., Horsiberger, J. D. & Rossier, B. C. Nature 361, 467–470 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Chalfie, M., Driscoll, M. & Huang, M. Nature 361, 504 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Betz, H. Biochemistry 29, 3591–3599 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Unwin, N. Cell 72, 31–41 (1993).

    Article  PubMed  Google Scholar 

  10. Chalfie, M. & Sulston, J. Devl. Biol. 82, 358–370 (1981).

    Article  CAS  Google Scholar 

  11. Chalfie, M. & Au, M. Science 243, 1027–1033 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Driscoll, M. J. Neurobiol. 23, 1327–1351 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hamelin, M., Scott, I. M., Way, J. C. & Culotti, J. G. EMBO J. 11, 2885–2893 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canessa, C. M. et al. Nature 367, 463–467 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Huang, M. & Chalfie, M., Nature 367, 467–470 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Morris, C. E. J. Membr. Biol. 113, 93–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. French, A. S. A. Rev. Physiol. 54, 135–152 (1992).

    Article  CAS  Google Scholar 

  18. Kramer, J. M., French, R. P., Park, E. C. & Johnson, J. J. Molec. cell. Biol. 10, 2081–2089 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kunkel, T. A., Roberts, J. D. & Zakar, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. EMBO J. 10, 3959–3970 (1992).

    Article  Google Scholar 

  21. Genetics Computer Group, Inc. Program manual version 7 (University Research Park, Madison, Wl, 1991).

  22. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fire, A., Harrison, S. W. & Dixon, D. Gene 93, 189–198 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, K., Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367, 470–473 (1994). https://doi.org/10.1038/367470a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367470a0

  • Springer Nature Limited

This article is cited by

Navigation