Skip to main content
Log in

Dopamine D1 receptors facilitate transmitter release

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A PHYSIOLOGICAL role for the dopamine D1 receptor has been difficult to define, particularly because of its complex pre- and postsynaptic localization in brain areas such as the striatum1. In the midbrain, however, D1 receptors are selectively localized to the terminals of GABA (γ-aminobutyric acid)-containing afferents2–4. We have studied the actions of these D1 receptors on evoked GABA synaptic potentials recorded intracellularly from dopamine neurons in the ventral tegmental area (VTA). We report here that dopamine augmented GABAB inhibitory postsynaptic potentials (i.p.s.ps) in the presence of D2 receptor antagonists. This effect was mimicked by the D1 agonists SKF38393 and SKF82958 and blocked by the D1 antagonists SCH23390 and cis-flupenthixol. No modulation of the GABAA synaptic potential was observed. The postsynaptic actions of the GABABagonist, baclofen, were unaffected by SKF38393, SCH23390 or cis-flupenthixol, confirming a presynaptic locus of D1 action. Additionally, D1 antagonists reduced the amplitude of the GABAB i.p.s.p. in the absence of D1 agonists. We conclude that dopamine acts tonically at presynaptic D1 receptors on the terminals of afferent GABA neurons to facilitate selectively GABAB-mediated neurotransmission in the midbrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, M. A. Trends Neurosci. 16, 299–305 (1993).

    Article  CAS  Google Scholar 

  2. Harrison, M. B., Wiley, R. G. & Wooten, G. F. Brain Res. 528, 317–322 (1990).

    Article  CAS  Google Scholar 

  3. Mansour, A. et al. Neuroscience 42, 359–371 (1991).

    Article  Google Scholar 

  4. Filloux, F. M., Dawson, T. M. & Wamsley, J. K. Brain Res. Bull. 20, 447–459 (1988).

    Article  CAS  Google Scholar 

  5. Johnson, S. W. & North, R. A. J. Physiol 450, 455–468 (1992).

    Article  CAS  Google Scholar 

  6. Mottola, D. M., Brewster, W. K., Cook, L. L., Nichols, D. E. & Mailman, R. B. J. Pharmac. exp. Ther. 262, 383–393 (1992).

    CAS  Google Scholar 

  7. Memo, M., Lovenberg, W. & Hanbauer, I. Proc. natn. Acad. Sci. U.S.A. 79, 4456–4460 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Balmforth, A. J., Warburton, P. & Ball, S. G. J. Neurochem. 55, 2111–2116 (1990).

    Article  CAS  Google Scholar 

  9. Artalejo, C. R., Ariano, M. A., Perlman, R. L. & Fox, A. P. Nature 348, 239–242 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Geffen, L. B., Jessell, T. M., Cuello, A. C. & Iversen, L. L. Nature 260, 258–260 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Llinás, R., Greenfield, S. A. & Jahnsen, H. Brain Res. 294, 127–132 (1984).

    Article  Google Scholar 

  12. Davies, C. H., Davies, S. N. & Collingridge, G. L. J. Physiol. 424, 513–531 (1990).

    Article  CAS  Google Scholar 

  13. Sugita, S., Johnson, S. W. & North, R. A. Neurosci. Lett. 134, 207–211 (1992).

    Article  CAS  Google Scholar 

  14. Johnson, S. W., Mercuri, N. B. & North, R. A. J. Neurosci. 12, 2000–2006 (1992).

    Article  CAS  Google Scholar 

  15. Chesselet, M. -F. Neuroscience 12, 347–375 (1984).

    Article  CAS  Google Scholar 

  16. Ziogas, J. & Cunnance, T. C. Br. J. Pharmac. 103, 1196–1202 (1991).

    Article  CAS  Google Scholar 

  17. Goldsmith, B. A. & Abrams, T. W. Proc. natn. Acad. Sci. U.S.A. 88, 9021–9025 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Eliot, L. S., Kandel, E. R., Siegelbaum, S. A. & Blumenfeld, H. Nature 361, 634–637 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Mintz, I. & Korn, H. J. Neurosci. 11, 3359–3370 (1991).

    Article  CAS  Google Scholar 

  20. Carlson, J. H., Bergstrom, D. A., Weick, B. G. & Walters, J. R. Synapse 1, 411–416 (1987).

    Article  CAS  Google Scholar 

  21. Floran, B., Aceves, J., Sierra, A. & Martinez-Fong, D. Neurosci. Lett. 116, 136–140 (1990).

    Article  CAS  Google Scholar 

  22. Reubi, J.-C., Iversen, L. L. & Jessell, T. M. Nature 268, 652–654 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Civelli, O., Bunzow, J. R. & Grandy, D. K. A. Rev. Pharmac. Toxicol. 33, 281–307 (1993).

    Article  CAS  Google Scholar 

  24. Weick, B. G. & Walters, J. R. Brain Res. 405, 234–246 (1987).

    Article  CAS  Google Scholar 

  25. Braun, A. R. & Chase, T. N. Eur. J. Pharmac. 131, 301–306 (1986).

    Article  CAS  Google Scholar 

  26. Robertson, G. S. & Robertson, H. A. Trends pharmacol. Sci. 8, 295–299 (1987).

    Article  CAS  Google Scholar 

  27. Lacey, M. G., Mercuri, N. B. & North, R. A. J. Physiol. 392, 397–416 (1987).

    Article  CAS  Google Scholar 

  28. Lacey, M. G., Mercuri, N. B. & North, R. A. J. Physiol. 401, 437–453 (1988).

    Article  CAS  Google Scholar 

  29. Williams, J. T., North, R. A., Shefner, S. A., Nishi, S. & Egan, T. M. Neuroscience 13, 137–156 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, D., Williams, J. Dopamine D1 receptors facilitate transmitter release. Nature 366, 344–347 (1993). https://doi.org/10.1038/366344a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366344a0

  • Springer Nature Limited

This article is cited by

Navigation