Skip to main content
Log in

Episodic multiregional cortical coherence at multiple frequencies during visual task performance

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE way in which the brain integrates fragmentary neural events at multiple locations to produce unified perceptual experience and behaviour is called the binding problem1,2. Binding has been proposed to involve correlated activity at different cortical sites during perceptuomotor behaviour3–5, particularly by synchronization of narrow-band oscillations in the & gamma;-frequency range (30& ndash;80 Hz)6,7. In the rabbit olfactory system, inhalation induces increased & gamma;-cor-relation between sites in olfactory bulb and cortex8. In the cat visual system, coherent visual stimuli increase & gamma;-correlation between sites in both the same and different visual cortical areas9–12. In monkeys, some groups have found that & gamma;-oscillations transiently synchronize within striate cortex13, superior temporal sulcus14 and somatosensorimotor cortex15,16. Others have reported that visual stimuli produce increased broad-band power, but not & gamma;-oscillations, in several visual cortical areas17,18. But the absence of narrow-band oscillations in itself does not disprove interregional synchronization, which may be a broad-band phenomenon. We now describe episodes of increased broad-band coherence among local field potentials from sensory, motor and higher-order cortical sites of macaque monkeys performing a visual discrimination task. Widely distributed sites become coherent without involving other intervening sites. Spatially selective multiregional cortical binding, in the form of broad-band synchronization, may thus play a role in primate perceptuomotor behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damasio, A. R. Neural Comput. 1, 123–132 (1989).

    Article  Google Scholar 

  2. Singer, W. A. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  Google Scholar 

  3. von der Malsburg, C. & Schneider, W. Biol. Cybern. 54, 29–40 (1986).

    Article  CAS  Google Scholar 

  4. Abeles, M. Local Cortical Circuits (Springer, Berlin, 1982).

    Book  Google Scholar 

  5. Engel, A. K. et al. Trends Neurosci. 15, 218–226 (1992).

    Article  CAS  Google Scholar 

  6. Bressler, S. L. Trends Neurosci. 13, 161–162 (1990).

    Article  CAS  Google Scholar 

  7. Crick, F. & Koch, C. Semin. Neurosci. 2, 263–275 (1990).

    Google Scholar 

  8. Bressler, S. L. Brain Res. 409, 285–293 (1987).

    Article  CAS  Google Scholar 

  9. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Engel, A. K., Konig, P., Kreiter, A. K. & Singer, W. Science 252, 1177–1179 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Engel, A. K., Kreiter, A. K., Konig, P. & Singer, W. Proc. natn. Acad. Sci. U.S.A. 88, 6048–6052 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Eckhorn, R. et al. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  Google Scholar 

  13. Freeman, W. J. & van Dijk, B. W. Brain Res. 422, 267–276 (1987).

    Article  CAS  Google Scholar 

  14. Kreiter, A. K. & Singer, W. Eur. J. Neurosci. 4, 369–375 (1992).

    Article  Google Scholar 

  15. Murthy, V. N. & Fetz, E. E. Proc. natn. Acad. Sci. U.S.A. 89, 5670–5674 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Sanes, J. N. & Donoghue, J. P. Proc. natn. Acad. Sci. U.S.A. 90, 4470–4474 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Young, M. P., Tanaka, K. & Yamane, S. J. Neurophys. 67, 1464–1474 (1992).

    Article  CAS  Google Scholar 

  18. Tovee, M. J. & Rolls, E. T. Neuroreport 3, 369–372 (1992).

    Article  CAS  Google Scholar 

  19. Glaser, E. M. & Ruchkin, D. S. Principles of Neurobiological Signal Analysis 168–176 (Academic, New York, 1976).

    Google Scholar 

  20. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Vis. Neurosci. 8, 337–347 (1992).

    Article  CAS  Google Scholar 

  21. Pfurtscheller, G. & Neuper, C. Neuroreport 3, 1057–1060 (1992).

    Article  CAS  Google Scholar 

  22. Gevins, A. S. & Bressler, S. L. in Functional Brain Imaging (eds Pfurtscheller, G. & Lopes da Silva, F. H.) 99–116 (Hans Huber, Bern, 1988).

    Google Scholar 

  23. Gevins, A. S. et al. Science 235, 580–585 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Livanov, M. N. Spatial Organization of Cerebral Processes (Wiley, New York, 1977).

    Google Scholar 

  25. Sheer, D. E. in Molecular Mechanisms in Memory and Learning (ed. Ungar, G.) 177–211 (Plenum, New York, 1970).

    Google Scholar 

  26. Bressler, S. L. & Nakamura, R. in Computation and Neural Systems (eds Eeckman, F. & Bower, J. M.) 515–522 (Kluwer, Norwell, Massachusetts, 1993).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressler, S., Coppola, R. & Nakamura, R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156 (1993). https://doi.org/10.1038/366153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366153a0

  • Springer Nature Limited

This article is cited by

Navigation