Skip to main content
Log in

Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE formation of nanometre-scale surface structures by atomic manipulation with the scanning tunnelling microscope has opened up opportunities for creating new metastable states of matter atom by atom1. The technique allows the fabrication of arbitrary structures, but its application may be limited by considerations of speed, as only one nanostructure can be built at a time. Here we describe the simultaneous formation of many densely packed nanostructures of various morphologies using diffusion-controlled aggregation on surfaces. By exploiting the dependence of the mobility of adsorbed atoms on substrate crystal face and temperature, we are able to grow linear, two-dimensional or tenuous fractal aggregates of nanometre dimensions. The high number density (1011& minus;1014 cm& minus;2) of these structures means that their physical and chemical properties can be easily measured with conventional surface spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Kern, R. in Interfacial Aspects of Phase Transitions (ed. Mutaftschiev, B.) 287–312 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  3. Witten, T. A. & Sander, L. M. Phys. Rev. B27, 5686–5697 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. Hwang, R. Q., Schröder, J., Günther, C. & Behm, R. J. Phys. Rev. Lett. 67, 3279–3282 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Roeder, H., Brune, H., Bucher, J. P. & Kern, K. Surf. Sci. (in the press).

  6. Venables, J. A., Spiller, G. D. T. & Hanbücken, M. Rep. Prog. Phys. 47, 399–459 (1984).

    Article  ADS  Google Scholar 

  7. Ayrault, G. & Ehrlich, G. J. Chem. Phys. 60, 281–294 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Michely, Th. & Comsa, G. Surf. Sci. 256, 217–226 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Jena, P., Khanna, S. N., Rao, B. K. (eds) Physics and Chemistry of Finite Systems: From Clusters to Crystals (Kluwer, Dordrecht, 1992).

    Google Scholar 

  10. Massobrio, C. & Blandin, Ph. Phys. Rev. B47, 13687–13694 (1993).

    Article  CAS  Google Scholar 

  11. Solyom, J. Adv. Phys. 28, 201–303 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Bonzel, H. in Diffusion in Metals and Alloys (ed. Mehrer, H.) Ch. 13 (Springer, Berlin, 1992).

    Google Scholar 

  13. Bucher, J. P., Hahn, E., Fernandez, P., Massobrio, C. & Kern, K. Phys. Rev. Lett. (submitted).

  14. Tsong, T. T., Liu, J. & Wu, C. W. in Physics and Chemistry of Finite Systems: From Clusters, to Crystals (eds Jena, P et al.) 1039–1045 (Kluwer, Dordrecht, 1992).

    Book  Google Scholar 

  15. Basset, D. W. Thin Solid Films 48, 237–249 (1978).

    Article  ADS  Google Scholar 

  16. Fink, H. W. & Ehrlich, G. Surf. Sci. 110, L611–L614 (1981).

    Article  CAS  Google Scholar 

  17. Schwoebel, P. R. & Kellog, G. L. Phys. Rev. Lett. 61, 578–581 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Wright, A. F., Daw, M. S. & Fong, C. Y. Phys. Rev. B42, 9409–9419 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Fernandez, P. & Massobrio, C. Surf. Sci. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röder, H., Hahn, E., Brune, H. et al. Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141–143 (1993). https://doi.org/10.1038/366141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366141a0

  • Springer Nature Limited

This article is cited by

Navigation