Skip to main content

Advertisement

Log in

Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THEORIES for the origin of life require the availability of reduced (or 'fixed') nitrogen-containing compounds, in particular ammonia. In reducing atmospheres, such compounds are readily formed by electrical discharges1,2, but geochemical evidence suggests that the early Earth had a non-reducing atmosphere1,3–6, in which discharges would have instead produced NO (refs 7–10). This would have been converted into nitric and nitrous acids and delivered to the early oceans as acid rain11. It is known12–15, however, that Fe(II) was present in the early oceans at much higher concentrations than are found today, and thus the oxidation of Fe(II) to Fe(III) provides a possible means for reducing nitrites and nitrates to ammonia. Here we explore this possibility in a series of experiments which mimic a broad range of prebiotic seawater conditions (the actual conditions on the early Earth remain poorly constrained). We find that the reduction by Fe(II) of nitrites and nitrates to ammonia could have been a significant source of reduced nitrogen on the early Earth, provided that the ocean pH exceeded 7.3 and is favoured for temperatures greater than about 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schopf, J. W. (ed.) Earth's Earliest Biosphere 53–92 (Princeton Univ. Press, 1983).

  2. Stribling, R. & Miller, S. L. Orig. Life Evol. Biosph. 17, 261–273 (1978).

    Article  Google Scholar 

  3. Walker, J. C. G. Orig. Life Evol. Biosph. 16, 117–127 (1985).

    Article  CAS  Google Scholar 

  4. Mattioli, G. S. & Wood, B. J. Nature 322, 626–628 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B. (eds) Chemical Cycles in the Evolution of the Earth 42–79 (Wiley, New York, 1988).

  6. Kasting, J. F. Precambr. Res. 34, 205–229 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Chameides, W. L. & Walker, J. C. G. Orig. Life Evol. Biosph. 11, 291–302 (1981).

    Article  CAS  Google Scholar 

  8. Yung, Y. L. & McElroy, M. B. Science 203, 1002–1004 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Kasting, J. F. Orig. Life Evol. Biosph. 20, 199–231 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Fegley, B. Jr, Prinn, R. G., Hartman, H. & Watkins, G. H. Nature 319, 305–308 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Mancinelli, R. L. & McKay, C. P. Orig. Life Evol. Biosph. 18, 311–325 (1988).

    Article  CAS  Google Scholar 

  12. H. D. Holland Econ. Geol. 68, 1169–1172 (1973).

    Article  CAS  Google Scholar 

  13. Walker, J. C. G. & Brimblecombe, P. Precambr. Res. 28, 205–222 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Derry, L. A. & Jacobsen, S. B. Geochim. Cosmochim. Acta 54, 2965–2975 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans Ch. 4 (Princeton Univ. Press, 1989).

    Google Scholar 

  16. Buresh, R. J. & Moraghan, J. T. J. envir. Qual. 5, 320–324 (1976).

    Article  CAS  Google Scholar 

  17. Walker, C. G. J. et al. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 260–284 (Princeton Univ. Press, 1983).

    Google Scholar 

  18. Chyba, C. & Sagan, C. Orig. Life Evol. Biosph. 21, 3–17 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Grätzel, Von M., Taniguchi, S. & Henglein, A. Ber. Bunsenges. phys. Chem. 74, 1003–1010 (1970).

    Article  Google Scholar 

  20. Doyle, M. P. & Mahapatro, S. N. J. Am. chem. Soc. 106, 3678–3679 (1984).

    Article  CAS  Google Scholar 

  21. Butler, J. N. Carbon Dioxide Equilibria and Their Applications (Addison-Wesley, Reading, MA, 1982)

    Google Scholar 

  22. Freier, R. K. (ed.) Aqueous Solutions Vol 1 (de Gruyter, Berlin, 1976).

  23. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans 205 (Princeton Univ. Press).

  24. Windley, B. F. (ed.) The Early History of the Earth (Wiley, New York, 1976).

  25. Turcotte, D. L. Earth planet. Sci. Lett. 48, 50–53 (1980).

    Article  ADS  Google Scholar 

  26. Kasting, J. F., Zahnle, K. J., Pinto, J. P. & Young, A. T. Orig. Life Evol. Biosph. 19, 95–108 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Zafiriou, O. C. & True, M. B. Mar. Chem. 8, 9–32 (1979).

    Article  CAS  Google Scholar 

  28. Broecker, W. S. & Peng, T.-H. Tracers in the Sea 243 (Lamont-Doherty geol. Obs. Palisades, 1982).

    Google Scholar 

  29. Kasting, J. F. J. geophys. Res. 87, 3091–3098 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Bada, J. L. & Miller, S. L. Science 159, 423–425 (1968).

    Article  ADS  CAS  Google Scholar 

  31. Kuhn, W. E. & Kasting, J. F. Nature 301, 53–55 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Walker, C. G. J. Orig. Life Evol. Biosph. 16, 117–127 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, D., Chang, S. Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature 365, 630–633 (1993). https://doi.org/10.1038/365630a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365630a0

  • Springer Nature Limited

This article is cited by

Navigation