Skip to main content
Log in

Magnetite formation by a sulphate-reducing bacterium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

BACTERIAL production of magnetite (Fe3O4)1 makes an important contribution to iron biomineralization and rcmanent magnetization of sediments2,3. Accurate magnetostratigraphy, reconstruction of the Earth's past magnetic-field behaviour and extraction of environmental information from the geomagnetic record depend on an understanding of the conditions under which bacterial magnetite is formed. In aquatic sediments, the process is thought to be restricted to a zone between the levels at which nitrate and iron reduction occur4. In sulphate-reducing habitats, deeper in the sediment, the presence of H2S reduces iron oxyhydroxides to iron sulphides5,6. Thus magnetite would not be expected to form under such reducing conditions5,7. We report here the isolation and pure culture of a dissimilatory sulphate-reducing bacterium, designated RS-1, which can synthesize intracellular magnetite particles. RS-1 is a freshwater anaerobe which is also capable of extracellular iron sulphide precipitation. This isolate illustrates the wider meta-bolic diversity of magnetic bacteria and suggests the presence of a novel mechanism of magnetic biomineralization. The discovery of such bacteria may also explain why large quantities of magnetite have been observed in sulphate-rich, oil-bearing, sedimentary deposits8–11. In addition, these results significantly enlarge the environments in which biogenic magnetite may be expected to occur and have important implications regarding the evolution of the ability to synthesize magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frankel, R. B., Blakemore, R. P. & Wolfe, R. S. Science 203, 1355–1356 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Peterson, N., von Dobeneck, T. & Vali, H. Nature 320, 849–851 (1986).

    Google Scholar 

  3. Vali, H. & Kirschvink, J. L. Nature 339, 203–206 (1989).

    Article  ADS  Google Scholar 

  4. Karlin, R., Lyle, M. & Heath, G. R. Nature 326, 490–493 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Rickard, D. T., Stockhlm. Contrib. Geol. 20, 50–66 (1969).

    Google Scholar 

  6. Morse, J. W., Millero, F. J., Cornwall, J. C. & Rickard, D. Earth. Sci. Rev. 24, 1–42 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Freke, A. M. & Tate, D. J. biochem. microbiol. Technol. Engng 3, 29–39 (1961).

    Article  CAS  Google Scholar 

  8. McCabe, C., Sassen, R. & Saffer, B. Geology 15, 7–10 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Gold, T. Oil Gas J. 89, 76–78 (1991).

    Google Scholar 

  10. Gold, T. Proc. natn. Acad. Sci. U.S.A. 89, 6045–6049 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Magot, M. et al. Int. J. Syst. Bact. 42, 398–403 (1992).

    Article  CAS  Google Scholar 

  12. Matsunaga, T., Sakaguchi, T. & Tadokoro, F. Appl. microbiol. Biotechnol. 35, 651–655 (1991).

    Article  CAS  Google Scholar 

  13. Bazylinski, D. A., Frankel, R. B. & Jannasch, H. W. Nature 334, 518–519 (1988).

    Article  ADS  Google Scholar 

  14. Blakemore, R. P., Maratea, D. & Wolfe, R. S. J. Bact. 140, 720–729 (1979).

    CAS  PubMed  Google Scholar 

  15. Matsunaga, T., Tadokoro, F. & Nakamura, N. IEEE Trans. Magnet. 26, 1557–1559 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Schleifer, K.-H. et al. Syst. appl. Microbiol. 14, 379–385 (1991).

    Article  Google Scholar 

  17. Meldrum, F. C., Mann, S., Heywood, B. R., Frankel, R. B. & Bazylinski, D. A. Proc. R. Soc. B251, 231–236 (1993).

    Article  ADS  Google Scholar 

  18. Meldrum, F. C., Mann, S., Heywood, B. R., Frankel, R. B. & Bazylinski, D. A. Proc. R. Soc. B251, 237–242 (1993).

    Article  ADS  Google Scholar 

  19. Jones, H. E., Trudinger, P. A., Chambers, L. A. & Pyliotis, N. A. Z. Allg. Mikrobiologie 16, 425–435 (1976).

    Article  CAS  Google Scholar 

  20. Farina, M., Esquivel, D. M. S. & Lins de Barros, H. G. P. Nature 343, 256–258 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A. & Jannasch, H. W. Nature 343, 258–261 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Blakemore, R. P., Short, K. A., Bazylinsky, D. A., Rosenblatt, C. & Frankel, R. B. Geomicrobiol. J. 4, 53–71 (1985).

    Article  CAS  Google Scholar 

  23. Lovley, D. R., Stolz, J. F., Nord, G. L. & Phillips, E. J. P. Nature 330, 258–261 (1987).

    Article  ADS  Google Scholar 

  24. Jørgensen, B. B. in The Major Biogeochemical Cycles and their Interactions (eds Bolin, B. & Cook, R. B.) 477–509 (Wiley, New York, 1983).

    Google Scholar 

  25. Sørensen, J., Jørgensen, B. B. & Revsbech, N. P. Microbiol. Ecol. 5, 105–115 (1979).

    Article  Google Scholar 

  26. Kirschvink, J. L., Jones, D. S. & MacFadden, B. J. Magnetite Biomineralization and Magnetoreception in Organisms. A New Biomagnetism 1–682 (Plenum, New York, 1985).

    Book  Google Scholar 

  27. Matsunaga, T., Nakamura, C., Burgess, J. G. & Sode, K. J. Bact. 174, 2748–2753 (1992).

    Article  CAS  Google Scholar 

  28. Kawaguchi, R., Burgess, J. G. & Matsunaga, T. Nucleic Acids Res. 20, 1140 (1992).

    Article  CAS  Google Scholar 

  29. Eden, P. A., Schmidt, T. M., Blakemore, R. P. & Pace, N. R. Int. J. Syst. Bact. 41, 324–325 (1991).

    Article  CAS  Google Scholar 

  30. Spring, S., Amann, R., Ludwig, W., Schleifer, K.-H. & Petersen, N. Syst. appl. Microbiol. 15, 116–122 (1992).

    Article  Google Scholar 

  31. DeLong, E. F., Frankel, R. B. & Bazylinski, D. A. Science 259, 803–806 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Williams, R. J. P. Nature 343, 213–214 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. J. biol. Chem. 238, 2882–2886 (1963).

    CAS  PubMed  Google Scholar 

  34. Smibert, R. M. & Kreig, N. R. Manual of Methods for General Bacteriology (ed. Gerhardt, P.) 416–417 (American Society for Microbiology, Washington, 1981).

    Google Scholar 

  35. Stookey, L. L. Analyt. Chem. 42, 779–781 (1970).

    Article  CAS  Google Scholar 

  36. Cord-Ruwisch, R. J. microbiol. Meth. 4, 33–36 (1985).

    Article  CAS  Google Scholar 

  37. Butler, R. F. & Banerjee, S. K. J. geophys. Res. 80, 4049–4058 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, T., Burgess, J. & Matsunaga, T. Magnetite formation by a sulphate-reducing bacterium. Nature 365, 47–49 (1993). https://doi.org/10.1038/365047a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/365047a0

  • Springer Nature Limited

This article is cited by

Navigation