Skip to main content
Log in

Stratospheric ozone depletion by CIONO2 photolysis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SPRINGTIME ozone depletion over Antarctica is thought1,2 to be due to catalytic cycles involving chlorine monoxide, which is formed as a result of reactions on the surface of polar stratospheric clouds (PSCs). When the PSCs evaporate, CIO in the polar air can react with NO2 to form the reservoir species C1ONO2. High concentrations of C1ONO2 can also be found at lower latitudes because of direct transport of polar air or mixing of CIO and NO2 at the edges of the polar vortex. C1ONO2 can take part in an ozone-depleting catalytic cycle18, but the significance of this cycle has not been clear. Here we present model simulations of ozone concentrations from March to May both within the Arctic vortex and at a mid-latitude Northern Hemisphere site. We find increasing ozone loss from March to May. The C1ONO2 cycle seems to be responsible for a significant proportion of the simulated ozone loss. An important aspect of this cycle is that it is not as limited as the other chlorine cycles to the timing and location of PSCs; it may therefore play an important role in ozone depletion at warm middle latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Report No. 25 (World Meteorological Organisation, Geneva, 1992).

  2. Solomon, S. Nature 347, 347–354 (1990).

    Article  CAS  ADS  Google Scholar 

  3. Toon, G. C. et al. J. geophys. Res. 94, 16571–16596 (1989).

    Article  ADS  Google Scholar 

  4. Toon, G. C., Farmer, C. B., Shaper, P. W., Lowes, L. L. & Norton, R. H. J. geophys. Res. 97, 7939–7961 (1992).

    Article  CAS  ADS  Google Scholar 

  5. Oelhaf, H. et al. Geophys. Res. Lett. (in the press).

  6. Toumi, R., Bekki, S. & Cox, R. J. atmos. Chem. 16, 135–144 (1993).

    Article  CAS  Google Scholar 

  7. Austin, J., Butchart, N. & Shine, K. P. Nature 360, 221–225 (1992).

    Article  CAS  ADS  Google Scholar 

  8. Yung, Y. L., Pinto, J. P., Watson, R. T. & Sander, S. P. J. atmos. Sci. 37, 339–353 (1980).

    Article  CAS  ADS  Google Scholar 

  9. Margitan, J. J. J. phys. Chem. 87, 674–679 (1983).

    Article  CAS  Google Scholar 

  10. Minton, T. K., Nelson, C. M., Moore, T. A. & Okumara, M. Science 258, 1342–1345 (1992).

    Article  CAS  ADS  Google Scholar 

  11. Wayne, R. P. (ed.) Atmos. Envir. 25A, no. 1, special issue (1991).

  12. Molina, L. T. & Molina, M. J. J. phys. Chem. 91, 433–436 (1987).

    Article  CAS  Google Scholar 

  13. Fahey, D. W. et al. Nature 363, 509–514 (1993).

    Article  CAS  ADS  Google Scholar 

  14. Zander, R. et al. J. atmos. Chem. 15, 171–186 (1992).

    Article  CAS  Google Scholar 

  15. Molina, M. & Rowland, F. S. Nature 249, 810–814 (1974).

    Article  CAS  ADS  Google Scholar 

  16. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. Nature 321, 755–758 (1986).

    Article  CAS  ADS  Google Scholar 

  17. DeMore, et al. Eval. No. 10, JLP-92 (NASA Jet Propulsion Lab., Pasadena, 1992).

  18. Chang, J. S., Barker, R. R., Davenport, J. E. & Goldan, D. M. Chem. Phys. Lett. 60, 385–390 (1979).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toumi, R., Jones, R. & Pyle, J. Stratospheric ozone depletion by CIONO2 photolysis. Nature 365, 37–39 (1993). https://doi.org/10.1038/365037a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365037a0

  • Springer Nature Limited

This article is cited by

Navigation