Skip to main content

Advertisement

Log in

Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN short-term experiments under productive laboratory conditions, native herbaceous plants differ widely in their potential to achieve higher yields at elevated concentrations of atmospheric carbon dioxide1–8. The most responsive species appear to be large fast-growing perennials of recently disturbed fertile soils7,8. These types of plants are currently increasing in abundance9 but it is not known whether this is an effect of rising carbon dioxide or is due to other factors. Doubts concerning the potential of natural vegetation for sustained response to rising carbon dioxide have arisen from experiments on infertile soils, where the stimulus to growth was curtailed by mineral nutrient limitations2,3,10. Here we present evidence that mineral nutrient constraints on the fertilizer effect of elevated carbon dioxide can also occur on fertile soil and in the earliest stages of secondary succession. Our data indicate that there may be a feedback mechanism in which elevated carbon dioxide causes an increase in substrate release into the rhizosphere by non-mycorrhizal plants, leading to mineral nutrient sequestration by the expanded microflora and a consequent nutritional limitation on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson, R. W. & Bazzaz, F. A. in Environmental and Climatic Impact of Coal Utilisation (eds Singh, J. J. & Deepak, A.) 609–623 (Academic, New York, 1980).

    Google Scholar 

  2. Zangerl, A. R. & Bazzaz, F. A. Oecologia 62, 412–417 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Oechel, W. C. & Strain, B. R. in Direct Effects of Increasing Dioxide on Vegetation (eds Strain, B. R. & Cure, J. D.) 117–154 (USDE, Washington, 1985).

    Google Scholar 

  4. Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. Can. J. Bot. 64, 2993–2998 (1986).

    Article  CAS  Google Scholar 

  5. Smith, S. D., Strain, B. R. & Sharkey, T. D. Functional Ecology 1, 139–143 (1987).

    Article  Google Scholar 

  6. Garbutt, K., Williams, W. E. & Bazzaz, F. A. Ecology 71, 1185–1194 (1990).

    Article  Google Scholar 

  7. Hunt, R., Hand, D. W., Hannah, M. A. & Neal, A. M. Functional Ecology 5, 410–421 (1991).

    Article  Google Scholar 

  8. Hunt, R., Hand, D. W., Hannah, M. A. & Neal, A. M. Functional Ecology 7 (in the press).

  9. Hodgson, J. G. Biol. Conserv. 36, 253–274 (1986).

    Article  Google Scholar 

  10. Hilbert, D. W., Prudhomme, T. I. & Oechel, W. C. Oecologia 72, 466–472 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Bazzaz, F. A. A. Rev. ecol. Syst. 21, 167–196 (1990).

    Article  Google Scholar 

  12. Mooney, H. A. Ecol. Appl. 1, 2–5 (1991).

    Article  CAS  Google Scholar 

  13. Stitt, M. Pl. Cell Envir. 14, 741–762 (1991).

    Article  CAS  Google Scholar 

  14. Woodward, F. I., Thompson, G. F. & McKee, I. F. Ann. Bot. 67 (suppl. 1) 23–38 (1991).

    Article  Google Scholar 

  15. Bazzaz, F. A. & Miao, S. L. Ecology 74, 104–112 (1993).

    Article  Google Scholar 

  16. Luxmoore, R. J. Bioscience 31, 626 (1981).

    Article  Google Scholar 

  17. Lamborg, M. R., Hardy, R. W. F. & Paul, E. A. in CO2 and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide (ed. Lemon, E. R.) 131–176 (Westview, Boulder, 1983).

    Google Scholar 

  18. van Veen, J. A., Liljeroth, E. & Lekkerkerk, I. J. A. Ecol. Appl. 1, 175–181 (1991).

    Article  CAS  Google Scholar 

  19. Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. Pl. Physiol. 82, 83–89 (1986).

    Article  CAS  Google Scholar 

  20. Norby, R. J., O'Neill, E. G., Hodd, W. G. & Luxmoore, R. J. Tree Physiol. 3, 203–210 (1987).

    Article  CAS  Google Scholar 

  21. O'Neill, E. G., Luxmoore, R. J. & Norby, R. J. Pl. Soil 104, 3–11 (1987).

    Article  CAS  Google Scholar 

  22. Norby, R. J., Gunderson, C. A., Wullschleger, S. D., O'Neill, E. G. & McCracken, M. K. Nature 357, 322–324 (1992).

    Article  ADS  Google Scholar 

  23. Körner, C. & Arnone, J. A. III Science 257, 1672–1675 (1992).

    Article  ADS  Google Scholar 

  24. Hendry, G. A. F., Brocklebank, K. J. & Thorpe, P. C. in Methods in Comparative Plant Ecology (eds Hendry, G. A. F. & Grime, J. P.) 146–148 (Chapman & Hall, London, 1993).

    Book  Google Scholar 

  25. Rorison, I. H., Spencer, R. E. & Gupta, P. L. in Methods in Comparative Plant Ecology (eds Hendry, G. A. F. & Grime, J. P.) 156–163 (Chapman & Hall, London, 1993).

    Google Scholar 

  26. Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. in Ecological Interactions in Soil-Plants, Microbes and Animals (eds Fitter, A. H., Atkinson, D., Read, D. J. & Usher, M. B.) 123–125 (Blackwell, Oxford, 1985).

    Google Scholar 

  27. Jenkinson, D. S. in Advances in N-Cycling in Agricultural Ecosystems (ed. Wilson, J. R.) 368–385 (CAB International, Wallingford, 1988).

    Google Scholar 

  28. Shen, S. M., Pruden, G. & Jenkinson, D. S. Soil Biol. Biochem. 16, 437–444 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, S., Grime, J., Harris, J. et al. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364, 616–617 (1993). https://doi.org/10.1038/364616a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364616a0

  • Springer Nature Limited

This article is cited by

Navigation