Skip to main content
Log in

Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HEAT shock factor (HSF)1,2, the transcriptional activator of eukaryotic heat shock genes, is induced to bind DNA by a monomer to trimer transition involving leucine zipper interactions3,4. Although this mode of regulation is shared among many eukaryotic species, there is variation in the temperature at which HSF binding activity is induced. We investigated the basis of this variation by analysing the response of a human HSF expressed in Drosophila cells and Drosophila HSF expressed in human cells. We report here that the temperature that induces DNA binding and trimerization of human HSF in Drosophila was decreased by ∼10 °C to the induction temperature for the host cell, whereas Drosophila HSF expressed in human cells was constitutively active. The results indicate that the activity of HSF in vivo is not a simple function of the absolute environmental temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lis, J. T. & Wu, C. in Transcription Book 2 (eds Yamamoto, K. R. & McKnight, S. L.) 907–930 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  2. Sorger, P. Cell 65, 363–366 (1991).

    Article  CAS  Google Scholar 

  3. Westwood, J. T., Clos, J. & Wu, C. Nature 353, 822–827 (1991).

    Article  CAS  ADS  Google Scholar 

  4. Rabindran, S. K. et al. Science 259, 230–234 (1993).

    Article  CAS  ADS  Google Scholar 

  5. Rabindran, S. K., Giorgi, G., Clos, J. & Wu, C. Proc. natn. Acad. Sci. U.S.A. 88, 6906–6910 (1991).

    Article  CAS  ADS  Google Scholar 

  6. Schuetz, T. J., Gallo, G. J., Sheldon, L., Tempst, P. & Kingston, R. E. Proc. natn. Acad. Sci. U.S.A. 88, 6911–6915 (1991).

    Article  CAS  ADS  Google Scholar 

  7. Westwood, J. T. & Wu, C. Molec. cell. Biol. 13, 3481–3486 (1993).

    Article  CAS  Google Scholar 

  8. Perisic, O., Xiao, H. & Lis, J. T. Cell 59, 797–806 (1989).

    Article  CAS  Google Scholar 

  9. Zimarino, V. & Wu, C. Nature 327, 727–730 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Clos, J. et al. Cell 63, 1085–1097 (1991).

    Article  Google Scholar 

  11. Abravaya, K., Phillips, B. & Morimoto, R. I. Genes Dev. 5, 2117–2127 (1991).

    Article  CAS  Google Scholar 

  12. Hightower, L. E. Cell 66, 191–197 (1991).

    Article  CAS  Google Scholar 

  13. Craig, E. A. & Gross, C. A. Trends biochem. Sci. 16, 135–140 (1991).

    Article  CAS  Google Scholar 

  14. Abrayava, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. Genes Dev. 6, 1153–1164 (1992).

    Article  Google Scholar 

  15. Baler, R., Welch, W. J. & Voellmy, R. Cell Biol. 117, 1151–1159 (1992).

    Article  CAS  Google Scholar 

  16. Treuter, E. et al. Molec. gen. Genet. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clos, J., Rabindran, S., Wisniewski, J. et al. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364, 252–255 (1993). https://doi.org/10.1038/364252a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364252a0

  • Springer Nature Limited

This article is cited by

Navigation