Skip to main content
Log in

Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ION permeation through membrane channels is thought to be governed by a narrow region of the channel pore termed the selectivity filter1, which has been proposed to discriminate among ions by both specific binding and molecular sieving, as determined by pore diameter. Recent evidence suggests that a conserved domain (known as H5, P or SS1-SS2) in voltage-gated potassium2–8, sodium9–13 and calcium 12channels contributes to the lining of the pore. Here we investigate whether the H5 domain determines pore diameter and examine the role of pore diameter in controlling ion permeation. These studies rely on differences in single channel conductance, ion selectivity and apparent pore diameter between cyclic nucleotide-gated channels cloned from bovine retina14 and catfish olfactory neurons15. Using chimaeric retinal–olfactory channels, we find that the H5 domain determines these differences in permeation properties, providing structural evidence that the cyclic nucleotide-gated channels are indeed members of the voltage-gated channel family15–17. Moreover, these results show directly that the H5 domain helps form the selectivity filter and that molecular sieving is important in controlling ion permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts 1991).

    Google Scholar 

  2. MacKinnon, R. & Miller, C. Science 245, 1382–1385 (1989).

    Article  ADS  CAS  Google Scholar 

  3. MacKinnon, R. & Yellen, G. Science 250, 276–279 (1990).

    Article  ADS  CAS  Google Scholar 

  4. MacKinnon, R., Heginbotham, L. & Abramson, T. Neuron 5, 767–771 (1990).

    Article  CAS  Google Scholar 

  5. Yellen, G., Jurman, M. R., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Hartmann, H. A. et al. Science 251, 942–944 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Yool, A. J. & Schwarz, T. L. Nature 349, 700–704 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Kirsch, G. E. et al. Neuron 8, 499–505 (1992).

    Article  CAS  Google Scholar 

  9. Noda, M., Suzuki, H., Numa, S. & Stuhmer, W. FEBS Lett. 259, 213–216 (1989).

    Article  CAS  Google Scholar 

  10. Terlau, H. et al. FEBS Lett. 293, 93–96 (1991).

    Article  CAS  Google Scholar 

  11. Satin, J. et al. Science 256, 1202–1205 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K. & Numa, S. Nature 356, 441–443 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Backx, P. H., Yue, D. T., Lawerence, J. H., Marban, E. & Tomaselli, G. F. Science 257, 248–251 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Kaupp, B. U. et al. Nature 342, 762–766 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Goulding, E. H. et al. Neuron 8, 45–58 (1992).

    Article  CAS  Google Scholar 

  16. Jan, L. Y. & Jan, Y. N. Nature 345, 672 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Heginbotham, L., Abramson, T. & MacKinnon, R. Science 258, 1152–1155 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Nature 353, 86–90 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Dwyer, T. M., Adams, D. J. & Hille, B. J. gen. Phys. 75, 469–492 (1980).

    Article  CAS  Google Scholar 

  20. McClesky, E. W. & Almers, W. Proc. natn. Acad. Sci. U.S.A. 82, 7149–7153 (1985).

    Article  ADS  Google Scholar 

  21. Liman, E. R., Tytgat, J. & Hess, P. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  22. Hodgkin, A.L. & Katz, B. J. Physiol. 108, 37–77 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulding, E., Tibbs, G., Liu, D. et al. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61–64 (1993). https://doi.org/10.1038/364061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364061a0

  • Springer Nature Limited

This article is cited by

Navigation