Skip to main content
Log in

ATCPl-related molecular chaperone from plants refolds phytochrome to its photoreversible form

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Correction to this article was published on 15 December 1994

Abstract

FOLDING of the major cytoskeletal components in the cytosol of mammalian cells is mediated by interactions with t-complex polypeptide-1 (TCP1) molecular chaperones1–6, a situation analogous to the chaperonin 60-aided folding of polypeptides in bacteria7,8, chloroplasts9,10 and mitochondria11,13. We have purified a TCP1-related molecular chaperone from etiolated oat seedlings that has a unique structure. Although immunologically related to TCP1, and having amino-acid sequence similarity, its quaternary structure is different from animal TCP1 proteins5,6–14. Electron microscopy and image analysis reveals that the chaperone has two stacked rings of six subunits each, and is distinct in size and configuration. The chaperone copurifies with the soluble cytosolic photoreceptor phytochrome15, and can stimulate refolding of denatured phytochrome to a photoactive form in the presence of Mg–ATP. We propose that this protein is the cytosolic chaperone involved in phytochrome biogenesis in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, R.J. Science 250, 954–959 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Gupta, R.S. Biochem. Int. 4, 833 (1990).

    Google Scholar 

  3. Willison, K. et al. Cell 57, 631–632 (1989).

    Article  Google Scholar 

  4. Yaffe, M.B. et al. Nature 358, 245–248 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Lewis, V.A., Hynes, G.M., Zheng, D., Saibil, H. & Willison, K. Nature 358, 249–252 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Frydman, J. et al. EMBO J. 11, 4767–4778 (1992).

    Article  CAS  Google Scholar 

  7. Hendrix, R.W. J. molec. Biol. 129, 375–392 (1979).

    Article  CAS  Google Scholar 

  8. Gatenby, A.A. & Ellis, R.J. Rev. Cell Biol. 6, 125–149 (1990).

    Article  CAS  Google Scholar 

  9. Hemmingsen, S.M. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hemmingsen, S.M. & Ellis, R.J. Pl. Physiol. 80, 269–276 (1986).

    Article  CAS  Google Scholar 

  11. McMullin, T. & Hallberg, R.L. Molec. cell. Biol. 8, 371–380 (1988).

    Article  CAS  Google Scholar 

  12. Hallberg, R.L. Semin. Cell Biol. 1, 37–45 (1990).

    CAS  PubMed  Google Scholar 

  13. Jindal, S., Dudani, A.K., Singh, B., Harley, C.B. & Gupta, R.S. Molec. cell. Biol. 9, 2279–2283 (1989).

    Article  CAS  Google Scholar 

  14. North, G. Nature 354, 434–435 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Furuya, M. Adv. Biophys. 25, 133–167 (1989).

    Article  CAS  Google Scholar 

  16. Gilmartin, P.M., Sarokin, L., Memelink, J. & Chua, N. -H. Pl. Cell 2, 369–378 (1990).

    Article  CAS  Google Scholar 

  17. Mori, M. et al. Gene 122, 381–382 (1992).

    Article  CAS  Google Scholar 

  18. Kubota, H. et al. Gene 120, 207–215 (1992).

    Article  CAS  Google Scholar 

  19. Ellis, R.J. & van der Vies, S.M. A. Rev. Biochem. 60, 321–347 (1991).

    Article  CAS  Google Scholar 

  20. Trent, J.D., Nimmersgem, E., Wall, J.S., Harti, F.-U. & Horwich, A.L. Nature 354, 490–493 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Viitanen, P.V. et al. Biochemistry 29, 5665–5671 (1990).

    Article  CAS  Google Scholar 

  22. Phipps, B.M. et al. Nature 361, 475–477 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Lill, R., Dowhan, W. & Wickner, W. Cell 60, 271–280 (1990).

    Article  CAS  Google Scholar 

  24. Rüdiger, W., Thümmler, F., Cmiel, E. & Schneider, S. Proc. natn. Acad. Sci. U.S.A. 80, 6244–6248 (1983).

    Article  ADS  Google Scholar 

  25. Grimm, R., Donaldson, G.K., van der Vies, S.M., Schäfer, E. & Gatenby, A.A. J. biol. Chem. 268, 5220–5226 (1993).

    CAS  PubMed  Google Scholar 

  26. Grimm, R. & Rüdiger, W.Z. Naturforschung 41c, 988–992 (1986).

    Article  Google Scholar 

  27. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Jackson, J.F. in Modern Methods of Plant Analysis, Vol1, Cell Components (eds Linskens, H.F. & Jackson, J. F.) 301 (Springer, Berlin, 1985).

    Google Scholar 

  29. Pilwat, G., Hampp, R. & Zimmermann, U. Planta 147, 396–404 (1980).

    Article  CAS  Google Scholar 

  30. Görg, A., Postel, W. & Günther, S. Electrophoresis 9, 531–546 (1988).

    Article  Google Scholar 

  31. Eckerskorn, C., Mewes, W., Goretzki, H. & Lottspeich, F. Eur. J. Biochem. 176, 509–519 (1988).

    Article  CAS  Google Scholar 

  32. Markham, R., Frey, S. & Hills, G.J. Virology 20, 88–102 (1963).

    Article  Google Scholar 

  33. Gross, J., Seyfried, M., Fukshansky, L. & Schäfer, E. in Techniques in Morphogenesis (eds Smith, H. & Holmes, M.G.) 131–158 (Academic, London, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mummert, E., Grimm, R., Speth, V. et al. ATCPl-related molecular chaperone from plants refolds phytochrome to its photoreversible form. Nature 363, 644–648 (1993). https://doi.org/10.1038/363644a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363644a0

  • Springer Nature Limited

This article is cited by

Navigation