Skip to main content
Log in

Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FOLLOWING reports of intense optical luminescence from porous silicon1,2, the opportunity for engineering optoelectronic devices using this material3,4 has attracted considerable attention. At present, however, the question of the origin of the luminescence has not been fully resolved5. The quantum-confinement model6–8 suggests that a quantum size effect gives optical transitions, and hence luminescence, in the visible range—this idea gains support from the wavelength dependence of the luminescence on porosity. An alternative model9,10 attributes the luminescence to siloxene-like compounds11 formed on the silicon surface. A third model, which invokes hydrogenated amorphous silicon as a possible source12,13, seems to be contradicted by X-ray absorption fine structure (XAFS) studies14–16. Here we report optical luminescence in porous silicon and siloxene induced by soft X-rays with energies near the silicon K-edge (1,839 eV). Using the luminescence together with the total electron yield, we can obtain the XAFS spectra for the luminescent sites in both materials. Our results show that the luminescence from porous silicon does not derive from siloxene (either freshly prepared or annealed), and thus suggest that the quantum-confinement model seems to provide the only viable explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pickering, C., Beale, M. I. J., Robertson, D. J., Pearson, P. J. & Greef, R. J. J. Phys. C17, 6535–6552 (1984).

    ADS  CAS  Google Scholar 

  2. Canham, L. T. Appl. Phys. Lett. 57, 1046–1048 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Uhlir, A. Bell Syst. Tech. J. 35, 333–347 (1956).

    Article  CAS  Google Scholar 

  4. Turner, D. R. J. electrochem. Soc. 105, 402–408 (1958).

    Article  CAS  Google Scholar 

  5. Sailor, M. J. & Kavanagh, K. L. Adv. Mater. 4, 432–434 (1992).

    Article  CAS  Google Scholar 

  6. Cullis, A. G. & Canham, L. T. Nature 353, 335–338 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C. & Keen, J. M. J. appl. Phys. 70, 422–431 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Lehmann, V. & Gösele, U. Appl. Phys. Lett. 58, 856–885 (1990).

    Article  ADS  Google Scholar 

  9. Déak, P., Rosenbauer, M., Stutzmann, M., Weber, J. & Brandt, M. S. Phys. Rev. Lett. 69, 2531–2534 (1992).

    Article  ADS  Google Scholar 

  10. Brandt, S., Fuchs, H. D., Stutzmann, M., Weber, J. & Cardona, M. Solid State Commun. 81, 307–312 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Weiss, A., Beiland, G. & Mayer, H. Z. Naturforsch. B34, 25–30 (1979).

    Google Scholar 

  12. Fathauer, R. W., George, T. & Ksendzov, A. Appl. Phys. Lett. 60, 995–997 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A. & Lin, T. L. Appl. Phys. Lett. 60, 1004–1006 (1992).

    Article  ADS  CAS  Google Scholar 

  14. van Buuren, T., Gao, Y., Tiedje, T., Dahn, J. R. & Way, B. M. Appl. Phys. Lett. 60, 3013–3015 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Sham, T. K. et al. Can. J. Phys. (in the press).

  16. Terry, J., Liu, H., Woicik J., Cao, R. & Pianetta, P. J. Vacuum Sci. Technol. (In the press).

  17. Sham, T. K., Holroyd, R. A. & Munoz, R. C. Nucl. Instrum. Meth. A249, 530–535 (1986).

    Article  ADS  Google Scholar 

  18. Sham, T. K. et al. Jpn J. appl. Phys. 32, suppl. 32–2, 223 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Jpn J. appl. Phys. 32, suppl. 32–2 (1993).

  20. Bianconi, A., Jackson, D. & Monahan, K. Phys. Rev. B17, 2021–2024 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Goulon, J., Tola, P., Lemonnier, M. & Dexpert-Ghys, J. Chem. Phys. 78, 347–356 (1983).

    Article  CAS  Google Scholar 

  22. Murata, T., Emura, S., Moriga, T., Maeda, H. & Normura, M. in X-ray Absorption Fine Structures (ed. Hasnain, S. S.) (Ellis Horwood, New York, 1991).

    Google Scholar 

  23. Emura, S. et al. Phys. Rev. B. 47, 6918–6930 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Sham, T. K. et al. Proc. Symp. DMat. Res. Soc. Mtg, Boston, November December 1992 (eds Tu, C. W., Houghton, D. C. & Tung, R. W.) (MRS, Pittsburg, in the press).

  25. Coulthard, I., Lorimer J. W. & Sham, T. K. Abstr. 824RNP, 118th Mtg Electrochem. Soc. Toronto, October 1992.

  26. Yang, B. X. et al. Nucl. Instrum. Methods Phys. Res. A316, 422–436 (1992).

    Article  ADS  Google Scholar 

  27. McMaster, W. H., Kerr Del Grande, N. & Hubbell, J. H. Compilation of X-ray Cross-Sections (National Technical Information Service, Springfield, VA, 1969).

    Google Scholar 

  28. Handbook of Optical Constants of Solids (ed. Palik, E. D.) (Academic, Orlando, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sham, T., Jiang, D., Coulthard, I. et al. Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence. Nature 363, 331–334 (1993). https://doi.org/10.1038/363331a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363331a0

  • Springer Nature Limited

This article is cited by

Navigation