Skip to main content
Log in

A nutrient-permeable channel on the intraerythrocytic malaria parasite

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DURING its 48-hour cycle inside the red blood cell, the human malaria parasite, Plasmodium falciparum, increases its volume 25-fold and divides asexually. This rapid growth demands large amounts of nutrients, a problem exacerbated by the lower metabolic rate and relative ionic impermeability of the host red blood cell. Direct passage of small nutrients across the two membranes that separate the parasite from the erythrocyte cytosol may be important for parasite development1 and has been demonstrated for radiolabelled glucose2, amino acids3,4 and purine nucleo-sides4–6. Flux studies on plasmodia are limited, however, to suspensions of erythrocyte-free parasites and so cannot be used to examine the individual transport properties of the two membranes involved. Here we use the cell-attached patch clamp method7 to overcome this limitation. After removing the intervening red blood cell membrane and forming gigaohm seals on the small (3–5 μm) parasite, we studied transport across the parasitophorous vacuole membrane (PVM), the outer of the two membranes that separate the parasite from the erythrocyte cytosol. A 140-pS channel which is permeable to both cations and anions was identified on the PVM. This channel is present at high density, is open more than 98 per cent of the time at the resting potential of the PVM, and is permeable to lysine and glucuronate. The channel can readily transport amino acids and monosaccharides across the PVM and may be essential for fulfilling the parasite's metabolic demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherman, I. W. Parasitology 96, S57–S81 (1988).

    Article  Google Scholar 

  2. Tanabe, K. Parasit. Today 6, 225–229 (1990).

    Article  CAS  Google Scholar 

  3. Trager, W. J. Protozool. 18, 392–399 (1971).

    Article  CAS  Google Scholar 

  4. Sherman, I. W. Bull. World Health Org. 55, 211–225 (1977).

    CAS  PubMed  Google Scholar 

  5. Hansen, B. D., Sleeman, H. K. & Pappas, P. W. J. Parasit 66, 205–212 (1980).

    Article  CAS  Google Scholar 

  6. Kanaani, J. & Ginsburg, H. J. biol. Chem. 264, 3194–3199 (1989).

    CAS  PubMed  Google Scholar 

  7. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  8. Langreth, S. G. Bull. World Health Org. 55, 171–178 (1977).

    CAS  PubMed  Google Scholar 

  9. Yamada, K. A. & Sherman, I. W. Molec. biochem. Parasit. 3, 253–264 (1981).

    Article  CAS  Google Scholar 

  10. Wibo, M., Thinés-Sempoux, D., Amar–Costesec, A., Beaufay, H. & Godelaine, D. J. Cell Biol. 89, 456–474 (1981).

    Article  CAS  Google Scholar 

  11. Dwyer, T. M., Adams, D. J. & Hille, B. J. gen. Physiol. 75, 469–492 (1980).

    Article  CAS  Google Scholar 

  12. Jap, B. K. & Walian, P. J. Q. Rev. Biophys. 24, 367–403 (1990).

    Article  Google Scholar 

  13. Hunter, M. & Giebisch, G. Nature 327, 522–524 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Gero, A. M. & Wood, A. M. Adv. exp. Med. Biol. 309A, 169–172 (1991).

    Article  CAS  Google Scholar 

  15. Ginsburg, H. Comp. biochem. Physiol. 95A, 31–39 (1990).

    Article  ADS  Google Scholar 

  16. Colombini, M. Nature 279, 643–645 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Benz, R. CRC crit. Rev. Biochem. 19, 145–190 (1985).

    Article  CAS  Google Scholar 

  18. Bennett, M. V. L. et al. Neuron 6, 305–320 (1991).

    Article  CAS  Google Scholar 

  19. Pouvelle, B. et al. Nature 353, 73–75 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Haldar, K. & Uyetake, L. Molec. biochem. Parasit. 50, 161–177 (1992).

    Article  CAS  Google Scholar 

  21. Lee, P., Ye, Z., Van Dyke, K. & Kirk, R. G. Am. J. trop. Med. Hyg. 39, 157–165 (1988).

    Article  CAS  Google Scholar 

  22. Mikkelsen, R. B., Wallach, E. F. H., Van Doren, E. & Nillni, E. A. Molec. biochem. Parasit. 21, 83–92 (1986).

    Article  CAS  Google Scholar 

  23. Izumo, A., Tanabe, K. & Kato, M. Comp. biochem. Physiol. 91B, 735–739 (1988).

    CAS  Google Scholar 

  24. Slater, A. F. G. & Cerami, A. Nature 355, 167–169 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Goldberg, D. E. et al. J. exp. Med. 173, 961–969 (1991).

    Article  CAS  Google Scholar 

  26. Schroeder, J. E., Fischbach, P. S., Zheng, D. & McCleskey, E. W. Neuron 6, 13–20 (1991).

    Article  CAS  Google Scholar 

  27. Trager, W. & Jensen, J. B. Science 193, 673–675 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Lambros, C. & Vanderberg, J. P. J. Parasit. 65, 418–420 (1979).

    Article  CAS  Google Scholar 

  29. Franciolini, F. & Wolfgang, N. J. gen. Physiol. 90, 453–478 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, S., Krogstad, D. & McCleskey, E. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362, 643–646 (1993). https://doi.org/10.1038/362643a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362643a0

  • Springer Nature Limited

This article is cited by

Navigation