Skip to main content

Advertisement

Log in

Variations in mercury deposition to Antarctica over the past 34,000 years

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

POLAR ice contains a valuable record of past atmospheric mercury deposition, which can provide information about both the natural biogeochemical cycling of this toxic trace metal and the impact of recent anthropogenic emissions. But existing studies of mercury in polar ice and snow cores1–5 suffer from sample contamination and inadequate analytical procedures. Here we report measurements of mercury concentrations spanning the past 34,000 years from the Dome C ice core, Antarctica, using the stringent trace-metal clean protocols developed by Patterson and co-workers6. Although this record does not extend into the industrial period, it provides an important baseline for future attempts to identify anthropogenic mercury in Antarctic ice and snow. We find that mercury concentrations were strikingly elevated during the last glacial maximum (18,000 years ago), when oceanic productivity may have been higher than it is today7. As oceanic mercury emission is correlated with productivity8,9, we suggest that this was the principal pre-industrial source of mercury to Antarctica; mercury concentrations in Antarctic ice might therefore serve as a palaeoproductivity indicator for the more distant past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, H. V., Koide, M. & Goldberg, E. D. Science 174, 692–694 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Appelqvist, H., Jensen, K. O., Sevel, T. & Hammer, C. Nature 273, 657–659 (1978).

    Article  ADS  Google Scholar 

  3. Carr, R. A. & Wilkniss, P. E. Science 181, 843–844 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Herron, M. M. et al. in Isotopes and Impurities in Snow and Ice, 98–102 (Int. Assoc. Sci. Hydrol., 1977).

    Google Scholar 

  5. Murozumi, M., Nakamura, S. & Yoshida, Y. Mem. natn Inst. Polar Res. 7, 255–263 (1978).

    CAS  Google Scholar 

  6. Boutron, C. F. & Patterson, C. C. Nature 323, 222–225 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Sarnthein, M., Winn, K. & Zahn, R. in Abrupt Climatic Change (eds Berger, W. H. & Labeyrie, L D.) 311–337 (Reidel, Holland, 1987).

    Book  Google Scholar 

  8. Kim, J. P. & Fitzgerald, W. F. Science 231, 1131–1133 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Mason, R. P. & Fitzgerald, W. F. Nature 347, 457–459 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Fitzgerald, W. F. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Ménard. P.) 363–408 (Reidel, Boston, 1986).

    Book  Google Scholar 

  11. Fitzgerald, W. F. in Chemical Oceanography. Vol. 9 (eds Riley, J. P. & Chester, R.) 151–186 (Academic, London, 1989).

    Google Scholar 

  12. Lindqvist, O. Water Air Soil Poll. 55 (1991).

  13. Nriagu, J. O. Nature 338, 47–49 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Nriagu, J. O. & Pacyna, J. M. Nature 333, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Fitzgerald, W. F. & Clarkson, T. W. Envir. Health Pers. 96, 159–166 (1991).

    Article  CAS  Google Scholar 

  16. Beiger, J. & Jernelöv, A. in The Biogeochemistry of Mercury in the Environment (ed. Nriagu, J.) 203–210 (Elsevier-North Holland. Amsterdam, 1979).

    Google Scholar 

  17. Jouzel, J. et al. Quat. Res. 3, 135–150 (1989).

    Article  Google Scholar 

  18. Patterson, C. C. & Settle, D. M. Geochim. Cosmochim. Acta 51, 675–681 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Varekamp, J. C., & Buseck, P. R. Appl. Geochem. 1, 65–73 (1986).

    Article  CAS  Google Scholar 

  20. Batifol, F., Boutron, C. F. & de Andelis, M. Nature 337, 544–546 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Taylor, S. R. Geochim. cosmochim. Acta 28, 1273–1285 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Gill, G. A. & Fitzgerald, W. F. Mar. Chem. 20, 227–243 (1987).

    Article  CAS  Google Scholar 

  23. Leuenberger, M. & Siegenthaler, U. Nature 360, 449–451 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Prospero, J. M., Savoie, D. L., Saltzman, E. L. & Larsen, R. Nature 350, 221–223 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Cline, J. D. & Bates, T. S. Geophys. Res. Lett. 10, 949–952 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Saigne, C. & Legrand, M. Nature 330, 240–242 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Nature 345, 156–158 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Petit, J. R., Briat, M. & Royer, A. Nature 293, 391–393 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Bloom, N. & Fitzgerald, W. F. Analyt. chim. Acta 208, 151–161 (1988).

    Article  CAS  Google Scholar 

  30. Boutron, C. F., Patterson, C. C. & Bankov, N. I. Earth Planet. Sci. Lett. 102, 248–259 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandal, G., Fitzgerald, W., Boutron, C. et al. Variations in mercury deposition to Antarctica over the past 34,000 years. Nature 362, 621–623 (1993). https://doi.org/10.1038/362621a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362621a0

  • Springer Nature Limited

This article is cited by

Navigation