Skip to main content
Log in

Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1–5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7–10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, D

c has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (∼10−5m) and values obtained from modelling earthquakes (∼10−2m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102–103 m thick12–17, whereas laboratory gouge layers are 1–10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ida, Y. J. geophys. Res. 77, 3796–3805 (1972); Bull. seism. Soc. Am. 63, 959–968 (1973).

    Article  ADS  Google Scholar 

  2. Dieterich, J. H. J. geophys. Res. 84, 2161–2168 (1979); in Mechanical Behaviour of Crustal Rocks, Geophys. Monogr. Ser. Vol. 24 (eds Carter, N. L., Friedman, M., Logan, J. M. & Sterns, D. W.) 103–120 (Am. Geophys. Un., Washington DC, 1981).

    Google Scholar 

  3. Ruina, J. geophys. Res. 88, 10359–10370 (1983).

    Article  ADS  Google Scholar 

  4. Andrews, D. J. Bull. seism. Soc. Am. 75, 1–21 (1985).

    Google Scholar 

  5. Scholz, C. H. Nature 336, 761–763 (1988).

    Article  ADS  Google Scholar 

  6. Dieterich, J. H. in Earthquake Source Mechanics (eds. Das, S., Boatwright, J. & Scholz, C.) 37–47 (Am. Geophys. Un., Washington DC, 1986); Tectonophysics 211, 115–134 (1992).

    Google Scholar 

  7. Tse, S. T. & Rice, J. R. J. geophys. Res. 91, 9452–9472 (1986).

    Article  ADS  Google Scholar 

  8. Lorenzetti, E. & Tullis, T. E. J. geophys. Res. 94, 12,343–12,361, (1989).

    Article  ADS  Google Scholar 

  9. Marone, C., Scholz, C. H. & Bilham, R. J. geophys. Res. 96, 8441–8452 (1991).

    Article  ADS  Google Scholar 

  10. Stuart, W. D. Pure appl. Geophys. 126, 619–641 (1988).

    Article  ADS  Google Scholar 

  11. Aki, K. J. geophys. Res. 84, 6140–6148 (1979); 92, 1349–1355 (1987).

    Article  ADS  Google Scholar 

  12. Rabinowicz, E. J. J. appl. Phys. 22, 1373–1379 (1951); 27, 131–135 (1956).

    Article  ADS  Google Scholar 

  13. Feng, R. & McEvilly, T. V. Bull. seism. Soc. Am. 73, 1701–1720 (1983).

    Google Scholar 

  14. Scholz, C. H. Geology 15, 493–497 (1987).

    Article  ADS  Google Scholar 

  15. Chester, F. M., Evans, J. P. & Biegel, R. L. J. geophys. Res. 98, 771–786 (1993).

    Article  ADS  Google Scholar 

  16. Michelini, A. & McEvilly, T. V. Bull. seism. Soc. Am. 81, 524–552 (1991).

    Google Scholar 

  17. Montgomery, D. R. & Jones, D. L. Geology 20, 55–58 (1992).

    Article  ADS  Google Scholar 

  18. Linker, M. F. & Dieterich, J. H. J. geophys. Res. 97, 4923–4940 (1992).

    Article  ADS  Google Scholar 

  19. Marone, C. Raleigh, C. B. & Scholz, C. H. J. geophys. Res. 95, 7007–7025 (1990).

    Article  ADS  Google Scholar 

  20. Biegel, R. L., Sammis, C. G. & Dieterich, J. H. J. struct. Geol. 11, 827–846 (1989).

    Article  ADS  Google Scholar 

  21. Marone, C. & Cox, S. J. D. Eos 71, 457 (1991).

    Google Scholar 

  22. Mühlaus, H.-B. & Vardoulakis, I. Géotechnique 37, 271–283 (1987).

    Article  Google Scholar 

  23. Jaeger, H. M. & Nagel, S. R. Science 255, 1523–1532 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Lambe, T. W. & Whitman, R. V. Soil Mechanics (Wiley, New York. 1969).

    Google Scholar 

  25. Boitnott, G. N., Biegel, R. L., Scholz, C. H., Yoshioka, N. & Wang, W. J. geophys. Res. 97, 8965–8978 (1992).

    Article  ADS  Google Scholar 

  26. Marone, C. & Scholz, C. H. J. struct. Geol. 11, 799–814 (1989).

    Article  ADS  Google Scholar 

  27. Power, W. L. & Tullis, T. E. J. geophys. Res. 97, 15425–15435 (1992).

    Article  ADS  Google Scholar 

  28. Sibson, R. H. Nature 316, 248–251 (1985); Pure appl. Geophys. 124, 159–176 (1986).

    Article  ADS  Google Scholar 

  29. Rice, J. R. J. geophys. Res. (in the press)

  30. Wong, T.-F. & Zhao, Y. Tectonophysics 175, 177–195 (1990).

    Article  Google Scholar 

  31. Scott, D. R., Marone, C. & Sammis, C. J. geophys. Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marone, C., Kilgore, B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618–621 (1993). https://doi.org/10.1038/362618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362618a0

  • Springer Nature Limited

This article is cited by

Navigation