Skip to main content
Log in

Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pC02

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE marine invertebrate Riftia pachyptila has a remarkable symbiosis with intracellular carbon-fixing sulphide-oxidizing bacteria which was first discovered at 2,450m depth on the Galapagos Rift1–4. Such symbiotic arrangements have since been found in a variety of invertebrate taxa and habitats5,6. Studies of these symbioses have focused on temperature, sulphide and oxygen as critical environmental parameters5,7–9. As Riftia has a high growth rate and its symbionts are far removed from the host surface10,11, inorganic carbon supply to the symbionts has been recognized as a problem and host mechanisms to concentrate inorganic carbon have been posited12,13. Increased environmental CO2 partial pressure (pCO2) has not seriously been considered as a critical environmental parameter7,14. Here we report that elevated pCO2 (2.9 kPa) in the worms' environment is a determinant of internal total CO2 (σ2CO2) and pCO2, facilitating CO2 transport and diffusion to the symbionts. We propose that elevated pCO2 is a potentially critical environmental factor for this species as well as for other chemoautotrophic symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Felbeck, H., Somero, G. N. & Childress, J. J. Nature 293, 291–293 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Felbeck, H. Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Fisher, C. R. Crit. Rev. aquat. Sci. 2, 399–436 (1990).

    CAS  Google Scholar 

  6. Tunnicliffe, V. Oceanogr. mar. Biol. A. Rev. 29, 319–407 (1991).

    Google Scholar 

  7. Childress, J. J. & Fisher, C. R. Oceanogr. mar. Biol. A. Rev. 30, 337–441 (1992).

    Google Scholar 

  8. Fisher, C. R. et al. Deep Sea Res. 35, 1745–1758 (1988).

    Article  ADS  Google Scholar 

  9. Johnson, K. S., Childress, J. J., Hessler, R. R., Sakamoto-Arnold, C. M. & Beehler, C. L. Deep Sea Res. 35, 1723–1744 (1988).

    Article  ADS  Google Scholar 

  10. Arp, A. J. & Childress, J. J. Physiol. Zool. 58, 38–45 (1985).

    Article  Google Scholar 

  11. Roux, M. et al. C. R. Acad. Sc. Paris (sér, III) 308, 121–127 (1989).

    Google Scholar 

  12. Felbeck, H. Physiol. Zool. 53, 272–281 (1985).

    Article  Google Scholar 

  13. Childress, J. J. et al. Biol. Bull. 180, 135–153 (1991).

    Article  CAS  Google Scholar 

  14. Fisher, C. R., Kennicutt II, M. C. & Brooks, J. M. Science 247, 1094–1096 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Raven, J. A. Can. J. Bot. 69, 908–924 (1991).

    Article  CAS  Google Scholar 

  16. Jones, M. L. Proc. Biol. Soc. Wash. 93, 1295–1313 (1981).

    Google Scholar 

  17. Jones, M. L. Science 213, 333–336 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Arp, A. J., Childress, J. J. & Fisher, C. R. Jr, Bull. Biol. Soc. Wash. 6, 289–300 (1985)

    Google Scholar 

  19. Arp, A. J., Childress, J. J. & Vetter, R. D. J. exp. Biol. 128, 139–158 (1987).

    CAS  Google Scholar 

  20. Arp, A. J., Doyle, M. L., Di Cera, E. & Gill, S. J. Resp. Physiol. 80, 323–334 (1990).

    Article  CAS  Google Scholar 

  21. Childress, J. J., Arp, A. J. & Fisher, C. R. Jr Mar. Biol. 83, 109–124 (1984).

    Article  CAS  Google Scholar 

  22. Von Damm, K. L. A. Rev. Earth planet. Sci. 18, 173–204 (1990).

    Article  ADS  Google Scholar 

  23. Johnson, K. S., Childress, J. J. & Beehler, C. L. Deep Sea Res. 35, 1711–1722 (1988).

    Article  ADS  Google Scholar 

  24. Kochevar, R. E., Govind, N. S. & Childress, J. J. Molec. mar. Biol. Biotech. (in the press).

  25. Rau, G. H. Bull. Biol. Soc. Wash. 6, 243–248 (1985).

    Google Scholar 

  26. Van Dover, C. L. & Fry, B. Mar. Biol. 102, 257–263 (1989).

    Article  CAS  Google Scholar 

  27. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Earth planet. Sci. Lett. 22, 169–176 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Childress, J. J., Fisher, C. R., Favuzzi, J. A. & Sanders, N. K. Physiol. Zool. 64, 1444–1470 (1991).

    Article  CAS  Google Scholar 

  29. Quetin, L. B. & Childress, J. J. Deep Sea Res. 27, 383–391 (1980).

    Article  ADS  Google Scholar 

  30. Boutilier, R. G., Heming, T. A. & Iwama, G. K. in Fish Physiology (eds Hoar, W. S. & Randall, D. J.) 401–430 (Academic, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, J., Lee, R., Sanders, N. et al. Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pC02. Nature 362, 147–149 (1993). https://doi.org/10.1038/362147a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362147a0

  • Springer Nature Limited

This article is cited by

Navigation