Skip to main content
Log in

Drug assay using antibody mimics made by molecular imprinting

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LIGAND-BINDING assays are used for determination of minute amounts of substances in the bloodstream. Such assays require a receptor that specifically binds the substance of interest. The receptor used is often an antibody1–5, but antibodies require special handling and a costly production procedure5. We have used molecular imprinting, a method for creating selective recognition sites in synthetic polymers6–8, to prepare polymers that mimic antibody combining sites. Molecular imprints made against theophylline9 and diazepam10 showed strong binding and cross-reactivity profiles similar to those of antibodies. Here we describe a new radiolabelled ligand-binding assay, the molecularly im-printed sorbent assay, which uses antibody mimics. This assay accurately measures drug levels in human serum, with results comparable to those obtained using a well established immunoassay technique. Antibody mimics, which are stable and readily prepared by molecular imprinting, may provide a useful general alternative to antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yalow, R. S. & Berson, S. A. Nature 184, 1648–1649 (1959).

    Article  CAS  Google Scholar 

  2. Köhler, G. & Milstein, C. Nature 256, 495–497 (1975).

    Article  ADS  Google Scholar 

  3. Oellerich, M. J. clin. Chem. clin. Biochem. 22, 895–904 (1984).

    CAS  PubMed  Google Scholar 

  4. Gosling, J. P. Clin. Chem. 36, 1408–1427 (1990).

    CAS  PubMed  Google Scholar 

  5. Kurstak, E. in Enzyme Immunodiagnosis (ed. Kurstak, E.) 5–11 (Academic, London, 1986).

    Book  Google Scholar 

  6. Sellergren, B., Ekberg, B. & Mosbach, K. J. Chromatogr. 347, 1–10 (1985).

    Article  CAS  Google Scholar 

  7. Wulff, G. Am. chem. Soc. Symp. Series 308, 186–230 (1986).

    CAS  Google Scholar 

  8. Shea, K. J. & Sasaki, D. Y. J. Am. chem. Soc. 113, 4109–4120 (1991).

    Article  CAS  Google Scholar 

  9. Hendeles, L., Weinberger, M. & Johnson, G. Clin. Pharmacokinet. 3, 294–312 (1978).

    Article  CAS  Google Scholar 

  10. Harvey, S. L. in The Pharmacological Basis of Therapeutics (eds Gilman, A. G., Goodman, L. S., Rall, T. W. & Murad, F.) 339–351 (Dekker, New York, 1985).

    Google Scholar 

  11. Ekberg, B. & Mosbach, K. Trends Biotechnol. 7, 92–96 (1989).

    Article  CAS  Google Scholar 

  12. Sellergren, B., Lepistö, M. & Mosbach, K. J. Am. chem. Soc. 110, 5853–5860 (1988).

    Article  CAS  Google Scholar 

  13. O'Shannessy, D. J., Ekberg, B., Andersson, L. I. & Mosbach, K. J. Chromatogr. 470, 391–399 (1989).

    Article  CAS  Google Scholar 

  14. Andersson, L. I. & Mosbach, K. J. Chromatogr. 516, 313–322 (1990).

    Article  CAS  Google Scholar 

  15. Wulff, G. & Minarik, M. J. Iiq. Chromatogr. 13, 2987–3000 (1990).

    CAS  Google Scholar 

  16. Fischer, L., Müller, R., Ekberg, B. & Mosbach, K. J. Am. chem. Soc. 113, 9358–9360 (1991).

    Article  CAS  Google Scholar 

  17. Andersson, L. I. thesis, Lund Univ. (1991).

  18. Meffin, P. J. & Miners, J. O. in Progress in Drug Metabolism Vol. 4 (eds Bridges, J. W. & Chasseaud, L. F.) 261–307 (Wiley, London, 1980).

    Google Scholar 

  19. Peng, G. W., Gadalla, M. A. F. & Chiou, W. L. Clin. Chem. 24, 357–361 (1978).

    CAS  PubMed  Google Scholar 

  20. Mura, P., Piriou, A., Fraillon, P., Papet, Y. & Reiss, D. J. Chromatogr. 416, 303–310 (1987).

    Article  CAS  Google Scholar 

  21. Castro, A., Ibanez, J., Voight, W., Noto, T. & Malkus, H. Clin. Chem. 24, 944–946 (1978).

    CAS  PubMed  Google Scholar 

  22. Chang, J., Gotcher, S. & Gushaw, J. B. Clin. Chem. 28, 361–367 (1982).

    CAS  PubMed  Google Scholar 

  23. Poncelet, S. M. et al. J. Immunoassay, 11, 77–88 (1990).

    Article  CAS  Google Scholar 

  24. Baselt, R. C. in Advances in Analytical Toxicology Vol. 1 (ed. Baselt, R. C.) 81–123 (Biomedical, Foster City, CA, 1984).

    Google Scholar 

  25. Altunkaya, D. & Smith, R. N. Forensic Sci. Int. 39, 23–37 (1988).

    Article  CAS  Google Scholar 

  26. Dietzler, D. N. et al. Clin. chim. Acta 101, 163–181 (1980).

    Article  CAS  Google Scholar 

  27. Cram, D. J. Nature 356, 29–36 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Rebek, J. Jr. Angew. chem. int. Ed. engl. 29, 245–255 (1990).

    Article  Google Scholar 

  29. Deslongchamps, G., Galán, A., de Mendoza, J. & Rebek, J. Jr Angew. chem. int. Ed. Engl. 31, 61–63 (1992).

    Article  Google Scholar 

  30. Tijssen, P. Laboratory Techniques in Biochemistry and Molecular Biology, Practice and Theory of Enzyme Immunoassays 5th printing (Elsevier, Amsterdam, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlatakis, G., Andersson, L., Müller, R. et al. Drug assay using antibody mimics made by molecular imprinting. Nature 361, 645–647 (1993). https://doi.org/10.1038/361645a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361645a0

  • Springer Nature Limited

This article is cited by

Navigation