Skip to main content

Advertisement

Log in

Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GLUTAMATE-GATED ion channels mediate most excitatory synaptic transmission in the central nervous system and play crucial roles in synaptic plasticity, neuronal development and some neuropathological conditions1–3. These ionotropic glutamate receptors have been classified according to their preferred agonists as NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) and KA (kainate) receptors4. On the basis of sequence similarity and pharmacological properties, the recently cloned glutamate receptor subunits have been assigned as components of NMDA (NMDAR1, 2A–D), AMPA (GluRl–4) and KA (GluR5–7, KA1, KA2) receptors5–7. Protein phosphorylation of glutamate receptors by protein kinase C and cyclic AMP-dependent protein kinase (PKA) has been suggested to regulate their function8–18, possibly playing a prominent role in certain forms of synaptic plasticity such as long-term potentiation19 and long-term depression9. Here we report that the GluR6 glutamate receptor, transiently expressed in mammalian cells, is directly phosphorylated by PKA, and that intracellularly applied PKA increases the amplitude of the glutamate response. Site-specific mutagenesis of the serine residue (Ser 684) representing a PKA consensus site completely eliminates PKA-mediated phosphorylation of this site as well as the potentiation of the glutamate response. These results provide evidence that direct phosphorylation of glutamate receptors modulates their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collingridge, G. L. & Singer, W. Trends pharmacol. Sci. 11, 290–296 (1990).

    Article  CAS  Google Scholar 

  2. Choi, D. W. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  3. Olney, J. W. A. Rev. Pharmac. Toxicol. 30, 47–71 (1990).

    Article  CAS  Google Scholar 

  4. Monaghan, D. T., Bridges, R. J. & Cotman, C. W. A. Rev. Pharmac. Toxicol. 29, 365–402 (1989).

    Article  CAS  Google Scholar 

  5. Gasic, G. P. & Hollmann, M. A. Rev. Physiol. 54, 507–536 (1992).

    Article  CAS  Google Scholar 

  6. Sommer, B. & Seeburg, P. Trends pharmacol. Sci. 13, 291–296 (1992).

    Article  CAS  Google Scholar 

  7. Nakanishi, S. Science 258, 597–603 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Kutsuwada, T. et al. Nature 358, 36–41 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Linden, D. J. & Connor, J. A. Science 254, 1656–1659 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Gerber, G. et al. J. Neurosci. 9, 3606–3617 (1989).

    Article  CAS  Google Scholar 

  11. Chen, L. & Huang, L. M. Nature 356, 521–523 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Chen, L. & Huang, L. M. Neuron 7, 319–326 (1991).

    Article  Google Scholar 

  13. Liman, E. R., Knapp, A. G. & Dowling, J. E. Brain Res. 481, 399–402 (1989).

    Article  CAS  Google Scholar 

  14. Wang, L.-Y., Salter, M. W. & MacDonald, J. F. Science 253, 1132–1135 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. Science 253, 1135–1138 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Chavez-Noriega, L. E. & Stevens, C. F. Brain Res. 574, 85–92 (1992).

    Article  CAS  Google Scholar 

  17. Knapp, A. G. & Dowling, J. E. Nature 325, 437–439 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Keller, B. U., Hollmann, M., Heinemann, S. & Konnerth, A. EMBO J. 11, 891–896 (1992).

    Article  CAS  Google Scholar 

  19. Madison, D. V., Malenka, R. C. & Nicoll, R. A. A. Rev. Neurosci. 14, 379–397 (1991).

    Article  CAS  Google Scholar 

  20. Egeojerg, J., Bettler, B., Hermans-Borgmeyer, I. & Heinemann, S. Nature 351, 745–748 (1991).

    Article  ADS  Google Scholar 

  21. Swope, S. L., Moss, S. J., Blackstone, C. D. & Huganir, R. L. FASEB J. 6, 2514–2523 (1992).

    Article  CAS  Google Scholar 

  22. Huganir, R. L., Miles, K. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 81, 6968–6972 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Huettner, J. E. Neuron 5, 255–266 (1990).

    Article  CAS  Google Scholar 

  24. Bettler, B. et al. Neuron 8, 257–265 (1992).

    Article  CAS  Google Scholar 

  25. Blackstone, C. D. et al. J. Neurochem. 58, 1118–1126 (1992).

    Article  CAS  Google Scholar 

  26. Hamill, O. P. et al. Pfluegers Arch 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  27. Tang, C.-M., Dichter, M. & Morad, M. Science 243, 1474–1477 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Kunkel, T. A., Roberts, J. D. & Zabour, D. L. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  29. Wang, L.-Y., Taverna, F. A., Huang, X.-P., MacDonald, J. F. & Hampson, D. R. Science (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, L., Blackstone, C. & Huganir, R. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361, 637–641 (1993). https://doi.org/10.1038/361637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361637a0

  • Springer Nature Limited

This article is cited by

Navigation