Skip to main content
Log in

Imaging terminals of Aplysia sensory neurons demonstrates role of enhanced Ca2+ influx in presynaptic facilitation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MODULATION of transmitter release underlies several forms of learning-related synaptic plasticity, including presynaptic facilitation and long-term potentiation1–4. Although the presynaptic terminals of most neurons are not accessible for direct study, it has often been possible to correlate changes in calcium influx in the cell body, owing to modulation of K+ or Ca2+ channels, with changes in release5–7. Some forms of presynaptic plasticity, however, do not involve changes in Ca2+ influx8–12. Moreover, the presence of multiple types of K+ and Ca2+channels with different subcellular distributions makes the direct measurement of Ca2+ influx into presynaptic terminals essential. Using synapses recon-stituted in culture between Aplysia sensory and motor neurons13, we have imaged Ca2+ influx in presynaptic terminal regions in response to action potentials, and demonstrate that presynaptic facilitation produced by 5-hydroxytryptamine involves enhanced Ca2+ influx through dihydropyridine (DHP)-insensitive Ca2+ channels14 present near release sites. This increased influx is attributable to spike broadening and is significantly correlated with the magnitude of presynaptic facilitation. By contrast, DHP-sensitive channels appear to aid the recovery from depression due to high-frequency stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawkins, R. D., Kandel, E. R. & Siegelbaum, S. A. A. Rev. Neurosci. (in the press).

  2. Castellucci, V. F. & Kandel, E. R. Science 194, 1176–1178 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Malinow, R. & Tsien, R. W. Nature 346, 177–180 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Dunlap, K. & Fischbach, G. D. Nature 276, 837–839 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Klein, M. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 77, 6912–6916 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Lipscombe, D., Kongsamut, S. & Tsien, R. W. Nature 340, 639–642 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Man-Son-Hing, H., Zoran, M. J., Lukowiak, K. & Haydon, P. G. Nature 341, 237–239 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Dale, N. & Kandel, E. R. J. Physiol., Lond. 421, 203–222 (1990).

    Article  CAS  Google Scholar 

  10. Hochner, B., Klein, M., Schacher, S. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 83, 8794–8798 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Delaney, K., Tank, D. W. & Zucker, R. S. J. Neurosci. 11, 2631–2643 (1991).

    Article  CAS  Google Scholar 

  12. Malgaroli, A. & Tsien, R. W. Nature 357, 134–139 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Rayport, S. G. & Schacher, S. J. Neurosci. 6, 759–763 (1986).

    Article  CAS  Google Scholar 

  14. Edmonds, B., Klein, M., Dale, N. & Kandel, E. R. Science 250, 1142–1147 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Braha, O., Edmonds, B., Klein, M., Sacktor, T. & Kandel, E. R. J. Neurosci. (in the press).

  16. Hochner, B., Klein, M., Schacher, S. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 83, 8410–8414 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Baxter, D. A. & Byrne, J. H. J. Neurophysiol. 62, 665–679 (1989).

    Article  CAS  Google Scholar 

  19. Mercer, A. R., Emptage, N. J. & Carew, T. J. Science 254, 1811–1813 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Byrne, J. H. J. Neurophys. 48, 431–438 (1982).

    Article  CAS  Google Scholar 

  21. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  22. Blumenfeld, H., Zablow, L. & Sabatini, B. Biophys. J. 63, 1146–1164 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Blumenfeld, H., Spira, M. E., Kandel, E. R. & Siegelbaum, S. A. Neuron 5, 487–499 (1990).

    Article  CAS  Google Scholar 

  24. Dodge, F. A. & Rahamimoff, R. J. Physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  25. Smith, S. J., Augustine, G. J. & Charlton, M. P. Proc. natn. Acad. Sci. U.S.A. 82, 622–625 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Braha, O. et al. Proc. natn. Acad. Sci. U.S.A. 87, 2040–2044 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Gingrich, K. J. & Byrne, J. H. J. Neurophysiol. 53, 652–669 (1985).

    Article  CAS  Google Scholar 

  28. Ghirardi, M. et al. Neuron 9, 479–489 (1992).

    Article  CAS  Google Scholar 

  29. Nerbonne, J. M. & Gurney, A. M. J. Neurosci. 7, 882–893 (1987).

    Article  CAS  Google Scholar 

  30. Glanzman, D. L., Kandel, E. R. & Schacher, S. Neuron 3, 441–450 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliot, L., Kandel, E., Siegelbaum, S. et al. Imaging terminals of Aplysia sensory neurons demonstrates role of enhanced Ca2+ influx in presynaptic facilitation. Nature 361, 634–637 (1993). https://doi.org/10.1038/361634a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361634a0

  • Springer Nature Limited

This article is cited by

Navigation