Skip to main content
Log in

Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PERIPHERAL sensory deprivation induces reorganization within the somatosensory cortex of adult animals1-6. Although most studies have focused on the somatosensory cortex1–6, changes at subcortical levels (for example the thalamus) could also play a fundamental role in sensory plasticity7–11. To investigate this, we made chronic simultaneous recordings of large numbers of single neurons across the ventral posterior medial thalamus (VPM) in adult rats. This allowed a continuous and quantitative evaluation of the receptive fields of the same sample of single VPM neurons per animal, before and after sensory deprivation. Local anaesthesia in the face induced an immediate and reversible reorganization of a large portion of the VPM map. This differentially affected the short latency (4–6 ms) responses (SLRs) and long latency (15–25 ms) responses (LLRs) of single VPM neurons. The SLRs and LLRs normally define spatiotemporally complex receptive fields in the VPM12. Here we report that 73% of single neurons whose original receptive fields included the anaesthetized zone showed immediate unmasking of SLRs in response to stimulation of adjacent cutaneous regions, and/or loss of SLRs with preservation or enhancement of LLRs in response to stimulation of regions just surrounding the anaesthetized zone. This thalamic reorganization demonstrates that peripheral sensory deprivation may induce immediate plastic changes at multiple levels of the somatosensory system. Further, its spatiotemporally complex character suggests a disruption of the normal dynamic equilibrium between multiple ascending and descending influences on the VPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merzenick, M. M. et al. Neuroscience 8, 33–55 (1983).

    Article  Google Scholar 

  2. Merzenick, M. M. et al. Neuroscience 10, 639–665 (1983).

    Article  Google Scholar 

  3. Kaas, J. H. A. Rev. Neurosci. 14, 137–167 (1991).

    Article  CAS  Google Scholar 

  4. Calford, M. B. & Tweedale, R. Nature 332, 446–448 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Calford, M. B. & Tweedale, R. J. Neurophysiol. 65, 178–187 (1991).

    Article  CAS  Google Scholar 

  6. Calford, M. B. & Tweedale, R. Somatic Mot. Res. 8, 249–260 (1991).

    Article  CAS  Google Scholar 

  7. Wall, P. D. & Egger, M. D. Nature 232, 542–545 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Nicolelis, M. A. L., Chapin, J. K. & Lin, R. C. S. Brain Res. 561, 344–349 (1991).

    Article  CAS  Google Scholar 

  9. Garragthy, P. E. & Kaas, J. H. Neuroreport 2, 747–750 (1992).

    Article  Google Scholar 

  10. Pons, T. P. et al. Science 252, 1857–1860 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Rausell, E., Cusick, C. G., Taub, E. & Jones, E. G. Proc. natn. Acad. Sci. U.S.A. 889, 2571–2575 (1992).

    Article  ADS  Google Scholar 

  12. Nicolelis, M. A. L., Lin, R. S. C., Woodward, D. & Chapin, J. K. Proc. natn. Acad. Sci. U.S.A. (in the press).

  13. Waite, P. M. E. J. Physiol., Lond. 228, 541–561 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Nakahama, H., Nishioka, S. & Otsuka, T. Prog. Brain Res. 21A, 180–196 (1966).

    Article  Google Scholar 

  15. Rhoades, R. W., Belford, G. R. & Killackey, H. P. J. Neurophysiol. 57, 1577–1600 (1987).

    Article  CAS  Google Scholar 

  16. Peschanski, M., Mantyh, P. W. & Besson, J. M. Brain Res. 278, 240–244 (1983).

    Article  CAS  Google Scholar 

  17. Chmielowska, J., Carvel, G. E. & Simon, D. J. J. Comp. Neurol. 285, 325–338 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolelis, M., Lin, R., Woodward, D. et al. Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361, 533–536 (1993). https://doi.org/10.1038/361533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361533a0

  • Springer Nature Limited

This article is cited by

Navigation