Skip to main content
Log in

Haldane's rule has multiple genetic causes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HALDANE'S rule states that "When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous [heterogametic or XY] sex"1. This rule represents one of the few patterns characterizing animal speciation2,3. Traditional explanations of Haldane's rule1,4–6 claim that heterogametic hybrids are unfit because they lack an X chromosome that is 'compatible' with the autosomes of one species. Recent work2,7 shows that this explanation is incorrect for hybrid sterility: contrary to prediction, homogametic hybrids carrying both X chromosomes from the same species remain fertile. Until now, similar tests have not been performed for hybrid inviability. Here I show that homogametic hybrids who carry both X chromosomes from the same species are inviable. These results show that the genetic causes of Haldane's rule differ for hybrid sterility versus inviability. Haldane's rule does not, therefore, have a single genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haldane, J. B. S. J. Genet. 12, 101–109 (1922).

    Article  Google Scholar 

  2. Coyne, J. A. & Orr, H. A. in Speciation and its Consequences (eds Otte, D. & Endler, J.) 180–207 (Sinauer Associates, Sunderland, Massachusetts, 1989).

    Google Scholar 

  3. Coyne, J. Nature 355, 511–515 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, New York, 1937).

    Google Scholar 

  5. Muller, H. J. in The New Systematics (eds Huxley, J. S.) 185–268 (Clarendon, Oxford, 1940).

    Google Scholar 

  6. Muller, H. J. Biol. Symp. 6, 71–125 (1942).

    Google Scholar 

  7. Coyne, J. A. Nature 314, 736–738 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lee, W. H. & Watanabe, T. K. Jap. J. Genet. 63, 225–239 (1987).

    Article  Google Scholar 

  9. Sturtevant, A. H. Genetics 5, 488–500 (1920).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sturtevant, A. H. Carnegie Inst. Washington Publ. 399, 1–62 (1929).

    Google Scholar 

  11. Hutter, P., Roote, J. & Ashburner, M. Genetics 124, 909–920 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Biddle, R. L. Genetics 17, 153–174 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, C.-I. Evolution 46, 1584–1587 (1992).

    Article  PubMed  Google Scholar 

  14. Ashburner, M. Drosophila: A Laboratory Handbook 1–1331 (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  15. Orr, H. A. Genet. Res. 59, 73–80 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orr, H. Haldane's rule has multiple genetic causes. Nature 361, 532–533 (1993). https://doi.org/10.1038/361532a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361532a0

  • Springer Nature Limited

This article is cited by

Navigation