Skip to main content
Log in

Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TECHNIQUES for surface modification are of considerable technological interest for the fabrication of water-repellent and anti-fouling coatings. Silanization1 (the chemical grafting of organic molecules onto a substrate via a trichlorosilane group) stands out among these techniques by virtue of its ability to provide highly compact coatings of optical quality, extreme chemical inertness and adjustable wettability2. Although the silanization reaction has been extensively characterized3–8, the properties of the grafted layers are still too variable for most commercial applications; for example, the quality of the grafted layers depends critically on the presence of trace amounts of water, and on the temperature at which the silanization reaction takes place9. Here we provide evidence for the existence of a near-ambient temperature threshold, Tc, which represents an upper bound for obtaining the highest-quality films. This threshold temperature is found to be an intrinsic property of the silane molecules: it depends linearly on their chain length, but is independent of the solvent used for the reaction. We suggest that Tc is analogous to the triple point in the phase diagram of Langmuir monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bigelow, W. C., Pickett, D. L. & Zisman, W. A. J. Colloid Sci. 1, 513 (1946).

    Article  CAS  Google Scholar 

  2. Plueddeman, E. P., in Silane Coupling Agents (Plenum, New York, 1982).

    Book  Google Scholar 

  3. Maoz, R. & Sagiv, J. J. Colloid. Interf. Sci. 100, 465 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Netzer, L., Iscovici, R. & Sagiv, J. Thin solid Films 100, 67 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Gun, J. & Sagiv, J. J. Colloid. Interf. Sci. 112, 457 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Tidswell, I. M. et al. J. chem. Phys. 95, 2854 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Tidswell, I. M. et al. phys. Rev. B41, 1111 (1990).

    Article  CAS  Google Scholar 

  8. Wasserman, S. R., Tao, Y. T. & Whitesides, G. M. Langmuir 5, 1074 (1989).

    Article  CAS  Google Scholar 

  9. Silberzan, P., Léger, L. Ausséré, D. & Bennattar, J. J. Langmuir 7(8), 1647 (1991).

    Article  CAS  Google Scholar 

  10. Vig, J. R. J. Vac. Sci. technol. A3, 1027 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Kruger, A. A. in Surface and Near Surface Chemistry of Oxide Materials (eds Nowotny, J. & Dufour, L. C.) 413–448 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  12. Zisman, W. A. Adv. Chem. Ser. No. 43, 1 (1964).

  13. Gaines, G. L. in Insoluble Monolayers at Liquid-Gas Interfaces (Wiley, New York, 1966).

    Google Scholar 

  14. Kellner, B. M. J., Muller-Landau, F. & Cadenhead, D. A. J. Colloid. Interf. Sci. 66, 3 (1978).

    Article  Google Scholar 

  15. Allain, C., Ausséré, D. & Rondelez, F. J. Colloid. Interf. Sci. 107, 5 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Dussan, V. E. J. Fluid Mech. 151, 1 (1985).

    Article  ADS  Google Scholar 

  17. Brochard-Wyart, F., Hervet, H., Redon, C. & Rondelez, F. J. Colloid. Interf. Sci. 142, 518 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzoska, J., Shahidzadeh, N. & Rondelez, F. Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings. Nature 360, 719–721 (1992). https://doi.org/10.1038/360719a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360719a0

  • Springer Nature Limited

This article is cited by

Navigation