Skip to main content
Log in

HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE invariant chain, which associates with the major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, serves two functions important in antigen processing. First, it prevents class II molecules from binding peptides in the early stages of intracellular transport1–3. Second, it contains a cytoplasmic signal that targets the class II-invariant chain complex to an acidic endosomal compartment4–6. Proteolytic cleavage and subsequent dissociation of the invariant chain then occurs7,8, allowing peptides derived from endocytosed proteins to bind to released class II molecules before their expression at the cell surface3. Certain human cell lines that are mutant in one or more MHC-linked genes are defective in class II-restricted antigen processing9–11. Here we show that in transfectants of one of these cell lines, T2, this deficiency results in the association of a large proportion of class II molecules with a nested set of invariant-chain-derived peptides (class II-associated invariant chain peptides, or CLIP). HLA-DR3 molecules isolated from T2 transfectants can be efficiently loaded with antigenic peptides by exposure to a low pH in vitro, perhaps reflecting the in vivo conditions in which peptides associate with class II molecules12–14. Addition of synthetic CLIP inhibits the loading process, indicating that CLIP may define the region of the invariant chain responsible for obstructing the class II binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roche, P. A. & Cresswell, P. Nature 345, 615–618 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Teyton, L. et al. Nature 348, 39–44 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Roche, P. A. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 88, 3150–3154 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Bakke, O. & Dobberstein, B. Cell 63, 707–716 (1990).

    Article  CAS  Google Scholar 

  5. Lotteau, V. et al. Nature 348, 600–605 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Lamb, C. A., Yewdell, J. W., Bennink, J. R. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 88, 5998–6002 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Blum, J. S. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 85, 3975–3979 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Nguyen, Q. V., Knapp, W. & Humphreys, R. E. Hum. Immun. 24, 153–163 (1989).

    Article  CAS  Google Scholar 

  9. Mellins, E. et al. Nature 343, 71–74 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Mellins, E., Kempin, S., Smith, L., Monji, T. & Pious, D. J. exp. Med. 174, 1607–1615 (1991).

    Article  CAS  Google Scholar 

  11. Riberdy, J. & Cresswell, P. J. Immun. 148, 2586–2590 (1992).

    CAS  Google Scholar 

  12. Jensen, P. E. J. exp. Med. 171, 1779–1784 (1990).

    Article  CAS  Google Scholar 

  13. Sadegh-Nasseri, S. & Germain, R. N. Nature 353, 167–170 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Germain, R. N. & Hendrix, L. R. Nature 353, 134–139 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Billing, R. J., Safani, M. & Peterson, P. A. J. Immun. 117, 1589–1593 (1976).

    CAS  PubMed  Google Scholar 

  16. Cresswell, P. Eur. J. Immun. 7, 636–639 (1977).

    Article  CAS  Google Scholar 

  17. Springer, T. A., Kaufman, J. F., Siddoway, L. A., Mann, D. L. & Strominger, J. L. J. biol. Chem. 252, 6201–6207 (1977).

    CAS  PubMed  Google Scholar 

  18. Neefjes, J. J. & Ploegh, H. L. EMBO J. 11, 411–416 (1992).

    Article  CAS  Google Scholar 

  19. Wei, M. L. & Cresswell, P. Nature 356, 443–446 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Strubin, M., Berte, C. & Mach, B. EMBO J. 5, 3483–3488 (1986).

    Article  CAS  Google Scholar 

  21. Geluk, A., Bloemhoff, W., DeVries, R. R. P. & Ottenhoff, T. H. M. Eur. J. Immun. 22, 107–113 (1992).

    Article  CAS  Google Scholar 

  22. Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J. & Unanue, E. R. Cell 64, 393–401 (1991).

    Article  CAS  Google Scholar 

  23. Rudensky, A. Y., Preston-Hurlburt, P., Hong, S. C., Barlow, A. & Janeway, C. Nature 353, 622–627 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Hunt, D. F. et al. Science 256, 1817–1820 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Chicz, R. M. et al. Nature 358, 764–768 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Lanzavecchia, A., Reid, P. A. & Watts, C. Nature 357, 249–252 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Glimcher, L. H., Polla, B. S., Poljak, A., Morton, C. C. & Mckean, D. J. J. Immun. 138, 1519–1523 (1987).

    CAS  PubMed  Google Scholar 

  28. Lampson, L. A. & Levy, R. J. Immun. 125, 293–299 (1980).

    CAS  Google Scholar 

  29. Newcomb, J. R. & Cresswell, P. J. Immun. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riberdy, J., Newcomb, J., Surman, M. et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 360, 474–477 (1992). https://doi.org/10.1038/360474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360474a0

  • Springer Nature Limited

This article is cited by

Navigation