Skip to main content
Log in

Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECENTLY measured abundances of beryllium1–4 and boron5 in a number of hot population II halo stars are orders of magnitude above the predicted abundances of those elements from standard Big Bang nucleosynthesis6. Be and B do not, however, show a plateau of constant abundance over a wide range of low metallicities and high temperatures, as is the case for 7Li (refs 7–15). The implication is that the 7Li abundance is largely primordial, whereas the Be and B abundances are due to galactic cosmic ray (GCR) spallation reactions16–22 on top of a much smaller Big Bang component23. But GCR spallation should also produce 7Li. As a consistency check on the combination of Big Bang nucleosynthesis and GCR spallation, we use the Be and B data to subtract from the measured 7Li abundance an estimate of the amount generated by GCR spallation21,22 for each star in the sample, and then add to this baseline an estimate of the metallicity-dependent augmentation of 7Li, due to spallation. The slightly reduced primordial 7Li abundance is still consistent with Big Bang nucleosynthesis, and a single GCR spallation model can fit the Be, B and corrected 7Li abundances for all the stars in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rebolo, R., Molaro, P., Abia, C. & Beckman, J. E. Astr. Astrophys. 193, 193–201 (1988).

    ADS  CAS  Google Scholar 

  2. Gilmore, G., Edvardsson, B. & Nissen, P. E. Astrophys. J. 378, 17 (1992).

    Article  ADS  Google Scholar 

  3. Ryan, S. G., Norris, J. E., Bessell, M. S. & Deliyannis, C. P. Astrophys. J. (in the press).

  4. Gilmore, G., Gustafsson, B., Edvardsson, B. & Nissen, P. E. Nature (submitted).

  5. Duncan, D. K., Lambert, D. L. & Lemke, M. Astrophys. J. (submitted).

  6. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Kang, H.-S. Astrophys. J. 376, 51–69 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Spite, F. & Spite, M. Astr. Astrophys. 115, 357–366 (1982).

    ADS  CAS  Google Scholar 

  8. Spite, M., Maillard, J. P. & Spite, F. Astr. Astrophys. 141, 56–60 (1984).

    ADS  CAS  Google Scholar 

  9. Spite, F. & Spite, M. Astr. Astrophys. 163, 140–144 (1986).

    ADS  CAS  Google Scholar 

  10. Hobbs, L. M. & Duncan, D. K. Astrophys. J. 317, 796–809 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Rebolo, R., Molaro, P. & Beckman, J. E. Astr. Astrophys. 192, 192–205 (1988).

    ADS  CAS  Google Scholar 

  12. Spite, M., Spite, F., Peterson, R. C. & Chaffee, F. H. Jr Astr. Astrophys. 172, L9–10 (1987).

    ADS  CAS  Google Scholar 

  13. Rebolo, R., Beckman, J. & Molaro, P. Astr. Astrophys. 172, L17–19 (1987).

    ADS  CAS  Google Scholar 

  14. Hobbs, L. M. & Pilachowski, C. Astrophys. J. 326, L23–26 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Hobbs, L. M. & Thorburn, J. A. Astrophys. J. 375, 116–120 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Reeves, H., Fowler, W. A. & Hoyle, F. Nature 226, 727 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Meneguzzi, M., Audouze, J. & Reeves, H. Astr. Astrophys. 15, 337 (1971).

    ADS  CAS  Google Scholar 

  18. Mitler, H. E. Astrophys. Space Sci. 17, 186 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Reeves, H. A. Rev. Astr. Astrophys. 12, 437 (1974).

    Article  ADS  Google Scholar 

  20. Walker, T. P., Mathews, G. J. & Viola, V. E. Astrophys. J. 299, 745.

  21. Steigman, G. & Walker, T. P. Astrophys. J. 385, L13 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Fields, B. Astrophys. J. (submitted).

  23. Thomas, D., Schramm, D. N., Olive, K. A. & Fields, B. Astrophys. J. (submitted).

  24. Smith, V. V., Nissen, P. E. & Lambert, D. Astrophys. J. (submitted).

  25. Deliyannis, C. P., Demarque, P. & Kawaler, S. D. Astrophys. J. (Suppl.) 73, 21–65 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Brown, L. & Schramm, D. N. Astrophys. J. 329, L103 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Dearborn, D., Schramm, D. N. & Hobbs, L. Astrophys. J. (in the press).

  28. Applegate, J. H., Hogan, C. & Scherrer, R. J. Phys. Rev. D35, 1151–1160 (1987).

    ADS  CAS  Google Scholar 

  29. Alcock, C., Fuller, G. M. & Mathews, C. J. Astrophys. J. 320, 439–447 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Kurki-Suonio, H., Matzner, R. A., Schramm, D. N. & Olive, K. A. Astrophys. J. 353, 406–410 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Pinsonneault, M. H., Deliyannis, C. P. & Demarque, P. Astrophys. J. (Suppl.) 78, 179–203 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Terasawa, N. & Sato, K. Astrophys. J. 367, L47 (1990).

    Article  ADS  Google Scholar 

  33. Deliyannis, C. P. & Pinsonneault, M. H. Astrophys. J. 365, L67–71 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Smith, V. V. & Lambert, D. Astrophys. J. 345, L75 (1989); 361, L69 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Brown, L. Astrophys. J. 389, 251–268 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Cameron, A. & Fowler, W. Astrophys. J. 167, 111 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olive, K., Schramm, D. Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature 360, 439–442 (1992). https://doi.org/10.1038/360439a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360439a0

  • Springer Nature Limited

This article is cited by

Navigation