Skip to main content
Log in

Exocytotic fusion is activated by Rab3a peptides

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

STUDIES of intracellular traffic in yeast and mammalian systems have implicated members of the Rab family of small GTP-binding proteins as regulators of membrane fusion1–10. We have used the patch clamp technique to measure exocytotic fusion events directly and investigate the role of GTP-binding proteins in regulating exocytosis in mast cells. Intracellular perfusion of mast cells with GTP-γS is sufficient to trigger complete exocytotic degranulation in the absence of other intracellular messengers11. Here we show that GTP is a potent inhibitor of GTP-γS-induced degranulation, indicating that sustained activation of a GTP-binding protein is sufficient for membrane fusion. We have found that synthetic oligopeptides, corresponding to part of the effector domain of Rab3a12, stimulate complete exocytotic degranulation, similar to that induced by GTP-γS. The response is selective for Rab3a sequence and is strictly dependent on Mg2+ and ATP. This suggests that sustained activation of a Rab3 protein causes exocytotic fusion. The peptide response can be accelerated by GDP-βS, suggesting that Rab3a peptides compete with endogenous Rab3 proteins for a binding site on a target effector protein, which causes fusion on activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne, H. R. Cell 53, 669–671 (1988).

    Article  CAS  Google Scholar 

  2. Balch, W. E. J. biol. Chem. 264, 16965–16968 (1989).

    CAS  Google Scholar 

  3. Walworth, N. C., Goud, B., Kabcenell, A. K. & Novick, P. J. EMBO J. 8, 1685–1693 (1989).

    Article  CAS  Google Scholar 

  4. Baker, D., Hicke, L., Rexach, M., Schleyer, M. & Schekman, R. Cell 54, 335–344 (1988).

    Article  CAS  Google Scholar 

  5. Beckers, C. J. M. & Balch, W. E. J. Cell Biol. 108, 1245–1256 (1989).

    Article  CAS  Google Scholar 

  6. Rexach, M. F. & Schekman, R. W. J. Cell Biol. 114, 219–229 (1991).

    Article  CAS  Google Scholar 

  7. Melancon, P. et al. Cell 51, 1053–1062 (1987).

    Article  CAS  Google Scholar 

  8. Mayorga, L. S., Diaz, R. & Stahl, P. D. Science 244, 1475–1477 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Mayorga, L. S., Diaz, R., Colombo, M. I. & Stahl, P. D. Cell Reg. 1, 113–124 (1989).

    Article  CAS  Google Scholar 

  10. Fischer von Mollard, G., Süidhof, T. C. & Jahn, R. Nature 349, 79–81 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Fernandez, J. M., Neher, E. & Comperts, B. D. Nature 312, 453–455 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Plutner, H., Schwaninger, R., Pind, S. & Balch, W. E. EMBO J. 9, 2375–2383 (1990).

    Article  CAS  Google Scholar 

  13. Penner, R., Pusch, M. & Neher, E. Biosci. Rep. 7, 313–321 (1987).

    Article  CAS  Google Scholar 

  14. Pusch, M. & Neher, E. Pflugers Arch. 411, 204–211 (1988).

    Article  CAS  Google Scholar 

  15. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Schaber, M. D. et al. Proteins Struct. Funct. Genet. 6, 306–315 (1989).

    Article  CAS  Google Scholar 

  17. Vogel, U. S. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Lindau, M. & Nusse, O. FEBS Lett. 222, 317–321 (1987).

    Article  CAS  Google Scholar 

  19. Mousli, M. et al. J. Pharmac. exp. Ther. 250, 329–335 (1989).

    CAS  Google Scholar 

  20. Mousli, M., Bueb, J.-L., Bronner, C., Rouot, B. & Landry, Y. Trends pharmac. Sci. 11, 358–362 (1990).

    Article  CAS  Google Scholar 

  21. Gomperts, B. D. A. Rev. Physiol. 52, 591–606 (1990).

    Article  CAS  Google Scholar 

  22. Mizoguchi, A., Kim, S., Ueda, T. & Takai, Y. Biochem. biophys. Res. Commun. 162, 1438–1445 (1989).

    Article  CAS  Google Scholar 

  23. Mizoguchi, A. et al. J. biol. Chem. 265, 11872–11879 (1990).

    CAS  PubMed  Google Scholar 

  24. Fischer v. Mollard, G. et al. Proc. natn. Acad. Sci. U.S.A. 87, 1988–1992 (1990).

    Article  ADS  Google Scholar 

  25. Darchen, F. et al. Proc. natn. Acad. Sci. U.S.A. 87, 5692–5696 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Monck, J. R. & Fernandez, J. M. J. Cell Biol. (in the press).

  27. Almers, W. & Neher, E. J. Physiol. 386, 205–217 (1987).

    Article  CAS  Google Scholar 

  28. Alvarez, de Toledo, G. & Fernandez, J. M. J. Cell Biol. 110, 1033–1039 (1990).

    Article  Google Scholar 

  29. Joshi, C. & Fernandez, J. M. Biophys. J. 53, 885–892 (1988).

    Article  CAS  Google Scholar 

  30. Fidler, N. & Fernandez, J. M. Biophys. J. 56, 1153–1162 (1989).

    Article  CAS  Google Scholar 

  31. Monck, J. R., Alvarez de Toledo, G. & Fernandez, J. M. Proc. natn. Acad. Sci. U.S.A. 87, 7804–7808 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Padfield, P. J., Balch, W. E. & Jamieson, J. D. Proc. natn. Acad. Sci. U.S.A. 89, 1656–1660 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Senyshyn, J., Balch, W. E. & Holz, R. W. FEBS Left 309, 41–46 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberhauser, A., Monck, J., Balch, W. et al. Exocytotic fusion is activated by Rab3a peptides. Nature 360, 270–273 (1992). https://doi.org/10.1038/360270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360270a0

  • Springer Nature Limited

This article is cited by

Navigation