Skip to main content

Advertisement

Log in

Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MAJOR histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport1–8. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides9–13. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunits are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deverson, E. V. et al. Nature 348, 738–741 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Trowsdale, J. et al. Nature 348, 741–744 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Spies, T. et al. Nature 348, 744–747 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Monaco, J. J., Cho, S. & Attaya, M. Science 250, 1723–1726 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Powis, S. J. et al. Nature 354, 528–531 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Kelly, A. et al. Nature 355, 641–644 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Spies, T. et al. Nature 355, 644–646 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Attaya, M. et al. Nature 355, 647–649 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Glynne, R. et al. Nature 353, 357–360 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Brown, M. G., Driscoll, J. & Monaco, J. J. Nature 353, 355–357 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Ortiz-Navarrete, V. et al. Nature 353, 662–664 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Martinez, C. K. & Monaco, J. J. Nature 353, 664–667 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Kelly, A. et al. Nature 353, 667–668 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Rivett, A. J. Archs Biochem. Biophys. 268, 1–8 (1989).

    Article  CAS  Google Scholar 

  15. Salter, R. D., Howell, D. N. & Cresswell, P. Immunogenetics 21, 235–235 (1985).

    Article  CAS  Google Scholar 

  16. Townsend, A. et al. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  17. Kvist, S. & Hamann, U. Nature 348, 446–448 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Ortiz-Navarrete, V. & Hämmerling, G. J. Proc. natn. Acad. Sci. U.S.A. 88, 3594–3597 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Cerundolo, V. et al. Nature 345, 449–452 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Hosken, N. A. & Bevan, M. J. Science 248, 367–370 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Powis, S. J. et al. Nature 357, 211–215 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Baas, E. J. et al. J. exp. Med. 176, 147–156 (1992).

    Article  CAS  Google Scholar 

  23. Henderson, R. A. et al. Science 255, 1264–1266 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Wei, M. L. & Cresswell, P. Nature 356, 443–446 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Goulmy, E. Transplant. Rev. 2, 29–53 (1988).

    Article  Google Scholar 

  26. Horai, S., v.d. Poel, J. & Goulmy, E. Immunogenetics 16, 135–142 (1992).

    Article  Google Scholar 

  27. Gotch, F., Rothbard, J., Howland, K., Townsend, A. & McMichael, A. Nature 326, 881–882 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Müller, C., Shi, L., Schneider, M., Ziegler, A. & Wernet, P. Hum. Immun. 6, 189–197 (1983).

    Article  Google Scholar 

  29. Müller, C. et al. Hum. Immun. 14, 333–349 (1985).

    Article  Google Scholar 

  30. Charron, D. J. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 76, 6567–6571 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Müller, C., Ziegler, A., Müller, G., Schunter, F. & Wernet, P. Hum. Immun. 5, 269–281 (1981).

    Article  Google Scholar 

  32. Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J. & Bodmer, W. F. Immunol. Rev. 47, 3–61 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momburg, F., Ortiz-Navarrete, V., Neefjes, J. et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360, 174–177 (1992). https://doi.org/10.1038/360174a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360174a0

  • Springer Nature Limited

This article is cited by

Navigation