Skip to main content
Log in

Cell-free expression of functional Shaker potassium channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE functional activity of ion channels and other membrane proteins requires that the proteins be correctly assembled in a transmembrane configuration. Thus, the functional expression of ion channels, neurotransmitter receptors and complex membrane-limited signalling mechanisms from complementary DNA has required the injection of messenger RNA or transfection of DNA into Xenopus oocytes or other target cells that are capable of processing newly translated protein into the surface membrane1–4. These approaches, combined with voltage-clamp analysis of ion channel currents, have been especially powerful in the identification of structure–function relationships in ion channels5–7. But oocytes express endogenous ion channels8,9, neurotransmitter receptors10 and receptor–channel subunits11, complicating the interpretation of results in mRNA-injected eggs. Furthermore, it is difficult to control experimentally the membrane lipids and post-translational modifications that underlie the regulation and modulation of ion channels in intact cells. A cell-free system for ion channel expression is ideal for good experimental control of protein expression and modulatory processes. Here we combine cell-free protein translation, microsomal membrane processing12–14 of nascent channel proteins, and reconstitution of newly synthesized ion channels into planar lipid bilayers15 to synthesize, glycosylate, process into membranes, and record in vitro the activity of functional Shaker potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lester, H. A. Science 241, 1057–1063 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Perez-Reyes, E. et al. Nature 340, 233–236 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Klaiber, K. et al. Neuron 5, 221–226 (1990).

    Article  CAS  Google Scholar 

  4. Yang, X.-C. et al. J. Neurosci. 12, 268–277 (1992).

    Article  CAS  Google Scholar 

  5. Numa, S. Harvey Lect. 83, 121–165 (1989).

    Google Scholar 

  6. Guy, H. R. & Conti, F. Trends Neuro. 13, 201–206 (1990).

    Article  CAS  Google Scholar 

  7. Miller, C. Science 252, 1092–1096 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Dascal, N. CRC crit Rev. Biochem. 22, 318–387 (1987).

    Google Scholar 

  9. Bourinet, E., Fournier, F., Nargeot, J. & Charnet, P. FEBS Lett. 299, 5–9 (1992).

    Article  CAS  Google Scholar 

  10. Fluharty, S. J., Reagan, L. P. & White, M. M. J. Neurochem. 56, 1307–1311 (1991).

    Article  CAS  Google Scholar 

  11. Buller, A. L. & White, M. M. Molec. Pharmac. 37, 423–428 (1990).

    CAS  Google Scholar 

  12. Walter, P. & Blobel, G. Meth. Enzym. 96, 84–93 (1983).

    Article  CAS  Google Scholar 

  13. Walter, P., Gilmore, R. & Blobel, G. Cell 38, 5–8 (1984).

    Article  CAS  Google Scholar 

  14. Kobilka, B. K. J. biol. Chem. 265, 7610–7618 (1990).

    CAS  PubMed  Google Scholar 

  15. Miller, C. Ion Channel Reconstitution (Plenum, New York, 1986).

    Book  Google Scholar 

  16. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Kamb, A., Tseng-Crank, J. & Tanouye, M. A. Neuron 1, 421–430 (1988).

    Article  CAS  Google Scholar 

  18. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Das, R. C., Brinkley, S. A. & Heath, E. C. J. biol. Chem. 255, 7933–7940 (1980).

    CAS  PubMed  Google Scholar 

  20. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Neuron 7, 547–556 (1991).

    Article  CAS  Google Scholar 

  21. Iverson, L. E., Tanouye, M. A., Lester, H. A., Davidson, M. & Rudy, B. Proc. natn. Acad. Sci. U.S.A. 85, 5723–5727 (1988).

    Article  ADS  CAS  Google Scholar 

  22. MacKinnon, R. Nature 350, 232–235 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Alberts, B. et al. Molecular Biology of the Cell 2nd edn (Garland, New York, 1991).

    Google Scholar 

  24. Zona, C., Eusebi, F. & Miledi, R. Proc. R. Soc. B239, 119–127 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Segev, N. Science 252, 1553–1556 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Hille, B. Ionic Channels of Excitable Membranes 2nd edn (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

  27. Schwartz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. Nature 331, 137–142 (1988).

    Article  ADS  Google Scholar 

  28. Schwartz, T. L., Papazian, D. M., Carretto, R. C., Jan, Y.-N. & Jan, L. Y. Neuron 2, 119–127 (1990).

    Article  CAS  Google Scholar 

  29. Maley, F., Trimble, R. B., Tarentino, A. L. & Plummer, T. H. Jr Analyt. Biochem. 180, 195–204 (1989).

    Article  CAS  Google Scholar 

  30. Rosenberg, R. L. & Chen, X.-h. J. gen. Physiol. 97, 1207–1225 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, R., East, J. Cell-free expression of functional Shaker potassium channels. Nature 360, 166–169 (1992). https://doi.org/10.1038/360166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360166a0

  • Springer Nature Limited

This article is cited by

Navigation