Skip to main content

Advertisement

Log in

Motor learning in a recurrent network model based on the vestibulo–ocular reflex

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MOST models of neural networks have assumed that neurons process information on a timescale of milliseconds and that the long-term modification of synaptic strengths underlies learning and memory1. But neurons also have cellular mechanisms that operate on a timescale of tens or hundreds of milliseconds, such as a gradual rise in firing rate in response to injection of constant current2 or a rapid rise followed by a slower adaptation3. These dynamic properties of neuronal responses are mediated by ion channels that are subject to modulation4. We demonstrate here how a neural network with recurrent feedback connections can convert long-term modulation of neural responses that occur over these intermediate timescales into changes in the amplitude of the steady output from the system. This general principle may be relevant to many feedback systems in the brain. Here it is applied to the vestibulo–ocular reflex, whose amplitude is subject to long-term adaptive modification by visual inputs5. The model reconciles apparently contradictory data on the neural locus of the cellular mechanisms that mediate this simple form of learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Churchland, P. S. & Sejnowski, T. J. The Computational Brain (MIT Press, Cambridge, MA. 1992).

    MATH  Google Scholar 

  2. Storm, J. F. Nature 336, 379–381 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, K. & Somjen, G. G. J. Phystol., Lond. 156, 75–92 (1961).

    Article  CAS  Google Scholar 

  4. Strong, J. A. & Kaczmarek, L. K. in Neuromodulation: The Biochemical Control of Neuronal Excitability (eds Kaczmarek, L. K. & Levitan, I. B.) (Oxford University Press, 1987).

    Google Scholar 

  5. Lisberger, S. G. Science 242, 728–735 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Miles, F. A., Braitman, D. J. & Dow, B. M. J. Neurophysiol. 43, 1477–1493 (1980).

    Article  CAS  Google Scholar 

  7. Lisberger, S. G. & Pavelko, T. A. Science 242, 771–773 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Miles, F. A., Fuller, J. H., Braitman, D. J. & Dow, B. M. J. Neurophysiol. 43, 1437–1476 (1980).

    Article  CAS  Google Scholar 

  9. Lisberger, S. G., Morris, E. J. & Tychsen, L. A. Rev. Neurosci. 10, 97–129 (1987).

    Article  CAS  Google Scholar 

  10. Fuchs, A. F. & Kimm, J. J. Neurophysiol. 38, 1140–1161 (1975).

    Article  CAS  Google Scholar 

  11. Gonshor, A. & Melvill Jones, G. J. Physiol., Lond. 256, 381–414 (1976).

    Article  CAS  Google Scholar 

  12. Miles, F. A. & Lisberger, S. G. A. Rev. Neurosci. 4, 273–299 (1981).

    Article  CAS  Google Scholar 

  13. Ito, M. Brain Res. 40, 81–84 (1972).

    Article  CAS  Google Scholar 

  14. Watanabe, E. Brain Res. 297, 169–174 (1984).

    Article  CAS  Google Scholar 

  15. Lisberger, S. G. & Sejnowski, T. J. Univ. California San Diego Inst. Neural Comput. Tech. Rep. 9201 (1992).

  16. Lisberger, S. G. & Pavelko, T. A. J. Neurosci. 6, 346–354 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisberger, S., Sejnowski, T. Motor learning in a recurrent network model based on the vestibulo–ocular reflex. Nature 360, 159–161 (1992). https://doi.org/10.1038/360159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360159a0

  • Springer Nature Limited

This article is cited by

Navigation