Skip to main content
Log in

A sharp and flat section of the core–mantle boundary

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core–mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5–7. For the 350-km-long section of the core–mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-to-core transition occurs over less than 1 km. The simplicity of the structure near and above the core–mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lay, T. Eos 70, 54–55; 58–59 (1989).

    Article  ADS  Google Scholar 

  2. Jeanloz, R. & Richter, F. M. J. geophys. Res. 84, 5497–5504 (1979).

    Article  ADS  Google Scholar 

  3. Williams, O. & Jeanloz, R. J. geophys. Res. 95, 19299–19310 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Knittle, E. & Jeanloz, R. Geophys. Res. Lett. 16, 609–612 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Kanamori, H. J. geophys. Res. 72, 559–572 (1967).

    Article  ADS  Google Scholar 

  6. Niazi, M. & McLaughlin, K. L. J. Geodynam. 8, 1–16 (1987).

    Article  ADS  Google Scholar 

  7. Chowdhury, D. K. & Frasier, C. W. J. geophys. Res. 78, 6021–6028 (1973).

    Article  ADS  Google Scholar 

  8. Vidale, J. E. & Benz, H. M. Nature 356, 678–683 (1992).

    Article  ADS  Google Scholar 

  9. Burdick, L. J. Geophys. Jl R. astr. Soc. 80, 35–55 (1985).

    Article  ADS  Google Scholar 

  10. Menke, W. Geophys. Res. Lett. 13, 1501–1504 (1986).

    Article  ADS  Google Scholar 

  11. Kampfmann, W. & Müller, G. Geophys. Res. Lett. 16, 653–656 (1989).

    Article  ADS  Google Scholar 

  12. Stevenson, D. J. Geophys. Jl R. astr. Soc. 88, 311–319 (1987).

    Article  ADS  Google Scholar 

  13. Young, C. J. & Lay, T. A. Rev. Earth planet. Sci. 15, 25–46 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Weber, M. & Koernig, M. Geophys. Res. Lett. 17, 1993–1996 (1990).

    Article  ADS  Google Scholar 

  15. Bataille, K. & Flatté S. M. J. geophys. Res. 93, 15057–15064 (1990).

    Article  ADS  Google Scholar 

  16. Gwinn, C. R., Herring, T. A. & Shapiro, I. I. J. geophys. Res. 91, 4755–4767 (1986).

    Article  ADS  Google Scholar 

  17. Lay, T. & Helmberger, D. V. J. geophys. Res. 88, 8160–8170 (1983).

    Article  ADS  Google Scholar 

  18. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19811–19824 (1991).

    Article  ADS  Google Scholar 

  19. Young, C. J. & Lay, T. J. geophys. Res., 95, 17385–17402 (1990).

    Article  ADS  Google Scholar 

  20. Tanimoto, T. Geophys. J. int. 100, 327–336 (1990).

    Article  ADS  Google Scholar 

  21. Schlittenhardt, J. J. geophys. 60, 1–18 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidale, J., Benz, H. A sharp and flat section of the core–mantle boundary. Nature 359, 627–629 (1992). https://doi.org/10.1038/359627a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359627a0

  • Springer Nature Limited

This article is cited by

Navigation