Skip to main content
Log in

ATP receptor-mediated synaptic currents in the central nervous system

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

UNTIL now, the only well documented, fast excitatory neurotrans-mitter in the brain has been glutamate. Although there is evidence for adenosine 5′-triphosphate (ATP) acting as a transmitter in the peripheral nervous system1–4, suggestions for such a role in the central nervous system1,5–11 have so far not been supported by any direct evidence. Here we report the recording of evoked and miniature synaptic currents in the rat medial habenula. The fast rise time of the currents showed that they were mediated by a ligand-activated ion channel rather than a second messenger system, thus limiting the known transmitter candidates. Evidence was found for the presence on the cells of glutamate, γ-aminobutyric acid, acetylcholine and ATP receptors, but not for 5-hydroxytryptamine (5HT3) or glycine receptors. The evoked currents were unaffected by blockers of glutamate, γ-aminobutyric acid or acetylcholine receptors but were blocked by the ATP receptor-blocker, suramin and the desensitizing ATP receptor-agonist α,β-methylene-ATP. Our evidence identifies for the first time synaptic currents in the brain, mediated directly by ATP receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyle, C. H. V. & Burnstock, G. in Adenosine in the Nervous System (ed. Stone, T. W.) Chapter 3 (Academic, London, 1991).

    Google Scholar 

  2. Bean, B. Trends Pharmac. Sci. 13, 87–90 (1992).

    Article  CAS  Google Scholar 

  3. Silinsky, E. M., Gerzanich, V. & Vanner, S. M. Br. J. Pharmac. 106, 762–763 (1992).

    Article  CAS  Google Scholar 

  4. Evans, R. J., Derkach, V. & Surprenant, A. Nature 357, 503–505 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Phillips, J. W., Kostopoulos, G. K. & Limacher, J. J. Can. J. Physiol. 52, 1226–1229 (1974).

    Article  Google Scholar 

  6. Fyffe, R. E. W. & Perl, E. R. Proc. natn. Acad. Sci. U.S.A. 81, 6890–6893 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Salter, M. W. & Henry, J. L. Neuroscience 15, 815–825 (1985).

    Article  CAS  Google Scholar 

  8. Jahr, C. E. & Jessel, T. M. Nature 304, 730–733 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Tschöpl, M., Harms, L., Nörenberg, W. & Illes, P. Eur. J. Pharm. 213, 71–77 (1992).

    Article  Google Scholar 

  10. Wierasko, A. & Seyfried, T. N. Brain Res. 491, 356–359 (1989).

    Article  Google Scholar 

  11. Inoue, K., Nakazawa, K., Fujimori, K., Wotano, T. & Takanaka, A. Neurosci. Lett. 134, 215–218 (1992).

    Article  CAS  Google Scholar 

  12. Schubert, P. & Kreutzberg, G. W. Brain Res. 168, 419–424 (1979).

    Article  CAS  Google Scholar 

  13. Nakazawa, K., Fujimori, K., Takanaka, A. & Inoue, K. J. Physiol. 434, 647–660 (1991).

    Article  CAS  Google Scholar 

  14. Burnstock, G. & Kennedy, C. Gen. Pharm. 16, 433–440 (1985).

    Article  CAS  Google Scholar 

  15. White, T. D. J. Neurochem. 30, 329–336 (1976).

    Article  Google Scholar 

  16. Potter, P. & White, T. D. Neuroscience 5, 1351–1356 (1980).

    Article  CAS  Google Scholar 

  17. Richardson, P. J. & Brown, S. J. Biochem. Soc. Trans. 14, 1250–1251 (1986).

    Article  CAS  Google Scholar 

  18. Wierasko, A., Goldsmith, G. & Seyfried, T. N. Brain Res. 485, 244–250 (1989).

    Article  Google Scholar 

  19. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Neuroscience 27, 995–1000 (1988).

    Article  CAS  Google Scholar 

  20. Neuhaus, R., Reber, B. F. X. & Reuter, H. J. Neurosci. 11, 3984–3990 (1991).

    Article  CAS  Google Scholar 

  21. Fieber, L. A. & Adams, D. J. J. Physiol. 434, 239–256 (1991).

    Article  CAS  Google Scholar 

  22. Tokunaga, A. & Otani, K. Brain Res. 150, 600–606 (1978).

    Article  CAS  Google Scholar 

  23. Williams, M. in Psychopharmacology: The Third Generation of Progress Chapter 30 (ed. Meltzer, H. Y.) (Raven Press, New York, 1987).

    Google Scholar 

  24. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, F., Gibb, A. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147 (1992). https://doi.org/10.1038/359144a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359144a0

  • Springer Nature Limited

This article is cited by

Navigation