Skip to main content

Advertisement

Log in

Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CHANGES in the isotope content of the large marine carbon reservoir can force shifts in that of the smaller carbon pools in the atmosphere and on land. The carbon isotope compositions of marine carbonate sediments from the late Palaeocene vary considerably, exhibiting a sudden decrease close to the Palaeocene/Eocene boundary which coincides with deep-sea benthic extinctions1 and with changes in ocean circulation. Here we report that these fluctuations in the marine carbon isotope record are closely tracked by the terrestrial records provided by palaeosol carbonates and mammalian tooth enamel. In using palaeosol carbonates to reconstruct the CO2 content of the ancient atmosphere2, isotope shifts of this sort will have to be taken into account. The sharp decrease in 13C/12C ratios in the late Palaeocene provides a datum for precise correlation of marine and continental records, and suggests that abrupt climate warming at this time may have played an important role in the evolution of land mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennett, J. P. & Stott, L. D. Nature 353, 225–229 (1991).

    Article  ADS  Google Scholar 

  2. Cerling, T. E. Am. J. Sci. 291, 377–400 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Aubry, M.-P. et al. Paleoceanography 3, 707–742 (1988).

    Article  ADS  Google Scholar 

  4. Shackleton, N. J., Palaeogeogr. Palaeoclim. Palaeoecol. 57, 91–102 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Tjalsma, R. C. & Lohmann, G. P. Micropaleont. spec. Publ. 4 (Micropaleontology Press, New York, 1983).

    Google Scholar 

  6. Thomas, E. Proc. Ocean Drilling Prog. B 113, 571–594 (1990).

    Google Scholar 

  7. Pak, D. K., Miller, K. G. & Wright, J. D. Geol. Soc. Am. Abstr. A 141 (1991).

  8. Thomas, E. Geol. Soc. Am. Abstr. 23(5), A141 (1991).

    Google Scholar 

  9. Barrera, E. Geol. Soc. Am. Abstr. 23(5), A179 (1991).

    Google Scholar 

  10. Sundquist, E. T. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broeker, W. S.) 5–59 (American Geophysical Union, 1985).

    Book  Google Scholar 

  11. Thackeray, J. F. et al. Nature 347, 751–753 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Mook, W. G. Neth. J. Sea Res. 20, 211–223 (1986).

    Article  CAS  Google Scholar 

  13. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. Am. J. Sci. 289, 436–454 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Raven, J. A. & Sprent, J. I. J. geol. Soc. Lond. 146, 161–170 (1989).

    Article  Google Scholar 

  15. O'Leary, M. H., Bioscience 38, 328–336 (1988).

    Article  CAS  Google Scholar 

  16. Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. J. archaeol. Sci. 16, 585–599 (1989).

    Article  Google Scholar 

  17. Quade, J. A., Cerling, T. E. & Bowman, J. R. Geol. Soc. Am. Bull. 101, 464–475 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Cerling, T. E., Solomon, D. K., Quade, J. & Bowman, J. R. Geochim. cosmochim. Acta 55, 3403–3405 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Cerling, T. E., Quade, J. A., Wang, Y. & Bowman, J. R. Nature 341, 138–139 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Mora, C. I., Driese, S. G. & Seager, P. G. Geology 19, 1017–1020 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Butler, R. F., Gingerich, P. D. & Lindsay, E. H. J. Geol. 89, 299–316 (1981).

    Article  ADS  Google Scholar 

  22. Gingerich, P. D. Univ. Mich. Papers Paleontrol. 28, 1–97 (1989).

    Google Scholar 

  23. Lee-Thorp, J. A. & van der Merwe, N. J. J. archaeol. Sci. 19, 343–354 (1991).

    Article  Google Scholar 

  24. Lee-Thorp, J. A. & van der Merwe, N. J. S. Afr. J. Sci. 83, 71–74 (1987).

    Google Scholar 

  25. Bown, T. M. & Kraus, M. J. Palaeogeogr. Palaeoclim. Palaeoecol. 34, 1–30 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Wing, S. L. Science 226, 439–441 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Wing, S. L., Bown, T. M. & Obradovich, J. D. Geology 19, 1189–1192 (1991).

    Article  ADS  Google Scholar 

  28. Wright, V. P. & Vanstone, S. D. J. geol. Soc. Lond. 148, 945–947 (1991).

    Article  CAS  Google Scholar 

  29. Berner, R. A. Am. J. Sci. 291, 339–376 (1989).

    Article  ADS  Google Scholar 

  30. Stott, L. D., Kennett, J. P., Shackleton, N. J. & Corfield, R. M. Proc. ODP Scient. Results 113 (eds Barker, P. F. et al.) 849–863 (Ocean Drilling Program, College Station, Texas, 1990).

    Google Scholar 

  31. Shackleton, N. J., Hall, M. A. & Boersma, A. Init. Rep. DSDP 74 (eds Moore, T. C. et al.) 599–612 (U.S. Government Printing Office, Washington DC, 1984).

    Google Scholar 

  32. Corfield, R. M., Cartlidge, J. E. & Shackleton, N. J. Paleoceanography (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, P., Zachos, J. & Gingerich, P. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992). https://doi.org/10.1038/358319a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358319a0

  • Springer Nature Limited

This article is cited by

Navigation