Skip to main content
Log in

TCP1 complex is a molecular chaperone in tubulin biogenesis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A ROLE in folding of newly translated proteins in the cytosol of eukaryotes has been proposed for t-complex polypeptide-1 (TCP1), although its molecular targets have not yet been identified1–3 Tubulin is a major cytosolic protein whose assembly into microtubules is critical to many cellular processes4–8. Although numerous studies have focused on the expression of tubulin9–20, little is known about the processes whereby newly translated tubulin subunits acquire conformations that enable them to form α-β-heterodimers. We examined the biogenesis of α- and β-tubulin in rabbit reticulocyte lysate, and report here that newly translated tubulin subunits entered a 900K complex in a protease-sensitive conformation. Addition of Mg-ATP, but not nonhydrolysable analogues, released the tubulin subunits as assembly-competent protein with a conformation that was relatively protease-resistant. The 900K complex purified from reticulocyte lysate contained as its major constituent a 58K protein that cross-reacted with a monoclonal antiserum against mouse TCP1. We conclude that TCP1 functions as a cytosolic chaperone in the biogenesis of tubulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, R. J. Science 250, 954–959 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Gupta, R. S. Biochem. Int. 20, 833–841 (1990).

    CAS  PubMed  Google Scholar 

  3. Trent, J. D., Nimmesgern, E., Wall, J. S., Hartl, F.-U. & Horwich, A. L. Nature 354, 490–493 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Dustin, P. Microtubules (Springer, New York, 1984).

    Book  Google Scholar 

  5. Kirschner, M. & Mitchison, T. Cell 45, 329–342 (1986).

    Article  CAS  Google Scholar 

  6. Vallee, R. Nature 352, 187–188 (1991).

    Article  ADS  Google Scholar 

  7. Skoufias, D. A., Burgess, T. L. & Wilson, L. J. Cell Biol. 111, 1929–1937 (1990).

    Article  CAS  Google Scholar 

  8. Huffaker, T. C., Thomas, J. H. & Botstein, D. J. Cell Biol. 106, 1997–2010 (1988).

    Article  CAS  Google Scholar 

  9. Ahmad, S., Ahuja, R., Venner, T. J. & Gupta, R. S. Molec. cell. Biol. 10, 5160–5165 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bollag, D. M. et al. Eur. J. Cell Biol. 51, 295–302 (1990).

    CAS  PubMed  Google Scholar 

  11. Burke, D., Gasdaska, P. & Hartwell, L. Molec. cell. Biol. 9, 1049–1059 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Caron, J. M., Jones, A. L., Rall, L. B. & Kirschner, M. W. Nature 317, 648–651 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Cleveland, D. W., Kirschner, M. W. & Cowan, N. J. Cell 15, 1021–1031 (1978).

    Article  CAS  Google Scholar 

  14. Coias, R., Galego, L., Barahona, I. & Rodrigues-Pousada, C. Eur. J. Biochem. 175, 467–474 (1988).

    Article  CAS  Google Scholar 

  15. Isaacs, W. B. & Fulton, A. B. in Cellular and Molecular Biology of Muscle Development (eds Kedes, L. H. & Stockdale, F. E.) 137–146 (Liss, New York, 1989).

    Google Scholar 

  16. Redmond, T. et al. Eur. J. Cell Biol. 50, 66–75 (1989).

    CAS  PubMed  Google Scholar 

  17. Sanchez, E. R. et al. Molec. Endocr. 2, 756–760 (1988).

    Article  CAS  Google Scholar 

  18. Weinstein, B. & Solomon, F. Molec. cell. Biol. 10, 5295–5304 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, J. & Yarbrough, L. R. Gene 61, 51–62 (1987).

    Article  CAS  Google Scholar 

  20. Yen, T. J., Machlin, P. S. & Cleveland, D. W. Nature 334, 580–585 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Yaffe, M. B., Farr, G. W. & Sternlicht, H. J. biol. Chem. 263, 16023–16031 (1988).

    Article  CAS  Google Scholar 

  22. Yaffe, M. B., Farr, G. W. & Sternlicht, H. J. biol. Chem. 264, 19045–19051 (1989).

    Article  CAS  Google Scholar 

  23. Grasso, J. A. Anat. Rec. 156, 397–414 (1966).

    Article  CAS  Google Scholar 

  24. Yaffe, M. B., Levinson, B. S., Szasz, J. & Sternlicht, H. Biochemistry 27, 1869–1880 (1988).

    Article  CAS  Google Scholar 

  25. Brown, H. R. & Erickson, H. P. Archs biochem. Biophys. 220, 46–51 (1983).

    Article  CAS  Google Scholar 

  26. Munro, S. & Pelham, H. R. Cell 46, 291–300 (1986).

    Article  CAS  Google Scholar 

  27. Rothman, J. E. Cell 59, 591–601 (1989).

    Article  CAS  Google Scholar 

  28. Gething, M.-J. & Sambrook, J. Nature 355, 33–45 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Beckmann, R. P., Mizzen, L. A. & Welch, W. J. Science 248, 850–854 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Willison, K. et al. Cell 57, 621–632 (1989).

    Article  CAS  Google Scholar 

  31. Ursic, D. & Culberson, M. R. Molec. cell. Biol. 11, 2629–2640 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cowan, N. J., Dobner, P., Fuchs, E. V. & Cleveland, D. W. Molec. cell. Biol. 3, 1738–1745 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H. & Willison, K. Nature 358, 249–252 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaffe, M., Farr, G., Miklos, D. et al. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248 (1992). https://doi.org/10.1038/358245a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358245a0

  • Springer Nature Limited

This article is cited by

Navigation