Skip to main content
Log in

Origin of ferroelectricity in perovskite oxides

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FERROELECTRIC materials are characterized by a switchable macroscopic polarization. Most technologically important ferroelectrics are oxides with a perovskite structure. The origin of their ferroelectric behaviour is unclear, however, and there is incomplete understanding of why similar, but chemically different, perovskites should display very different ferroelectric behaviour. The great sensitivity of ferroelectrics to chemistry, defects, electrical boundary conditions and pressure arises from a delicate balance between long-range Coulomb forces (which favour the ferroelectric state) and short-range repulsions (which favour the nonpolar cubic structure). To model the transition accurately, total-energy techniques are required which incorporate the effects of charge distortion and covalency. Here I report results of electronic-structure calculations on two classic examples of ferroelectric perovskites, BaTiO3 and PbTiO3, and demonstrate that hybridization between the titanium 3d states and the oxygen 2p states is essential for ferroelectricity. The different ferroelectric phase behaviour of the two materials is also clear: in PbTiO3, the lead and oxygen states hybridize, leading to a large strain that stabilizes the tetragonal phase, whereas in BaTiO3 the interaction between barium and oxygen is completely ionic, favouring a rhombohedral structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  2. Shirane, G., Pepinsky, R. & Frazer, B. C. Acta crystallogr. 9, 131–140 (1956).

    Article  CAS  Google Scholar 

  3. Harada, J., Pedersen, T. & Barnea, Z. Acta crystallogr. A26, 608–612 (1970).

    Article  CAS  Google Scholar 

  4. Salje, E. K. H. Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge Univ. Press, 1990).

    Google Scholar 

  5. Comes, R., Lambert, M. & Guinier, A. Acta crystallogr. A26, 244–254 (1970).

    Article  CAS  Google Scholar 

  6. Wei, S.-H. & Krakauer, H. Phys. Rev. Lett. 55, 1200–1203 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Hedin, L. & Lundqvist, B. I. J. Phys. C4, 2064–2083 (1971).

    ADS  Google Scholar 

  8. Cohen, R. E. & Krakauer, H. Phys. Rev. B42, 6416–6423 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Decker, D. L. & Zhao, Y. X. Phys. Rev. B39, 2432–2438 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Ramirez, R., Lapen̄a, M. F. & Gonzalo, J. A. Phys. Rev. B42, 2604–2606 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Cohen, R. E., Pickett, W. E. & Krakauer, H. Phys. Rev. Lett. 64, 2575–2578 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Cohen, R. E. in High Pressure Research: Application to Earth and Planetary Science (eds Syono, Y. & Manghnani, M. H.) (Terra Scientific, Tokyo, 1992).

    Google Scholar 

  13. Fontana, M. D., Idrissi, H., Kugel, G. E. & Wojcik, K. J. Phys.: Condens. Matter 3, 8695–8705 (1991).

    ADS  CAS  Google Scholar 

  14. Kohn, W. & Vashishta, P. in Theory of the Inhomogeneous Electron Gas (eds Lundqvist, S. & March, N. H.) (Plenum, New York, 1983).

    Google Scholar 

  15. Slater, J. C. Phys. Rev. 78, 748–761 (1950).

    Article  ADS  CAS  Google Scholar 

  16. Shannon, R. D. & Prewitt, C. T. Acta crystallogr. B25, 925–946 (1969).

    Article  CAS  Google Scholar 

  17. Boyer, L. L., Mehl, M. J., Flocken, J. W. & Hardy, J. R. J. appl. Phys. 24, Suppl. 24–2, 204–205 (1985).

    Article  Google Scholar 

  18. Marais, S., Heine, V., Nex, C. & Salje, E. Phys. Rev. Lett. 66, 2480–2483 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Pickett, W. E., Cohen, R. E. & Krakauer, H. Phys. Rev. Lett. 67, 228–231) (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992). https://doi.org/10.1038/358136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358136a0

  • Springer Nature Limited

This article is cited by

Navigation