Skip to main content
Log in

High lithium abundance in the secondary of the black-hole binary system V404 Cygni

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE maximum abundance of lithium in the oldest stars of the Galaxy is a factor of ten less than that of young stars and the local interstellar medium1, prompting an active search for sources of lithium. Type II supernovae, novae and accretion disks around black holes may be important sites of lithium production2,3. Stars in general are unlikely to produce lithium, as it is destroyed in their interiors through (p, α) reactions. Recently we showed that the transient X-ray source V404 Cyg is a low-mass X-ray binary with a black-hole primary4. Here we describe the discovery of lithium in the spectrum of V404 Cyg, as has also been noted independently by Wallerstein5 in our previously published spectra4. We derive a high lithium abundance in the secondary star of V404 Cyg, close to that of very young stars. Without lithium production, the secondary would have to be comparable in age to the Pleiades cluster (∼100Myr). If we are not seeing the system at an early moment in its lifetime, there must have been lithium production, which could be associated either with the supernova explosion that created it, or with the accretion disk now there. Further observations of this and similar systems may reveal that they are important sources of galactic lithium enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rebolo, R. in Evolution of Stars: The Photospheric Abundance Connection, IAU Symp. 145 (ed. Michaud, G. & Tutukov, A.) 85–97 (1991).

    Book  Google Scholar 

  2. Dearborn, D. S. P., Schramm, D. N., Steigman, G. & Truran, J. Astrophys. J. 347, 455–460 (1989).

    Article  CAS  ADS  Google Scholar 

  3. Jin, L. Astrophys. J. 356, 501–506 (1990).

    Article  CAS  ADS  Google Scholar 

  4. Casares, J., Charles, P. A. & Naylor, T. Nature 355, 614–617 (1992).

    Article  ADS  Google Scholar 

  5. Wallerstein, G. Nature, 356, 569 (1992).

    Article  ADS  Google Scholar 

  6. McClintock, J. E. & Remillard, R. A. Astrophys. J. 308, 110–122 (1986).

    Article  CAS  ADS  Google Scholar 

  7. Martín, E. L., Magazzú, A. & Rebolo, R. Astr. Astrophys. 257, 186 (1992).

    ADS  Google Scholar 

  8. de Jager, C. & Nieuwenhuijzen, H. Astr. Astrophys. 177, 217–227 (1987).

    CAS  ADS  Google Scholar 

  9. Magazzú, A., Rebolo, R. & Pavlenko, Ya. V. Astrophys. J. (in the press).

  10. Herbig, G. H., Astrophys. J. 141, 588–609 (1965).

    Article  CAS  ADS  Google Scholar 

  11. Proffitt, C. R. & Michaud, G. Astmphys. J. 346, 976–982 (1989).

    Article  CAS  ADS  Google Scholar 

  12. Brown, J. A., Sneden, C., Lambert, D. L. & Dutchover, E. Jr. Astrophys. J. Suppl. 71, 293–322 (1989).

    Article  CAS  ADS  Google Scholar 

  13. Balachandran, S., Lambert, D. L. & Stauffer, J. R. Astrophys. J. 333, 267–276 (1988).

    Article  CAS  ADS  Google Scholar 

  14. Duncan, D. K. & Jones, B. F. Astrophys. J. 271, 663–671 (1983).

    Article  CAS  ADS  Google Scholar 

  15. Duncan, D. K. Astrophys. J. 248, 651–669 (1981).

    Article  CAS  ADS  Google Scholar 

  16. Cayrel, R., Cayrel de Strobel, G., Campbell, B. & Däppen, W. Astrophys. J. 283, 205–208 (1984).

    Article  CAS  ADS  Google Scholar 

  17. Zahn, J. P. & Bouchet, L. Astr. Astrophys. 223, 112–118 (1989).

    ADS  Google Scholar 

  18. Soderblom, D. R., Oey, M. S., Johnson, D. R. H. & Stone, R. P. S. Astr. J. 99, 595–607 (1990).

    Article  CAS  ADS  Google Scholar 

  19. Kozlovsky, B. & Ramaty, R. Astrophys. J. 191, L43–L44 (1974).

    Article  CAS  ADS  Google Scholar 

  20. Murphy, R. J., Hua, X. M., Kozlovsky, B. & Ramaty, R. Astrophys. J. 351, 299–308 (1990).

    Article  CAS  ADS  Google Scholar 

  21. Romani, R. W. in Aspen Winter Astrophys. Conf. X-ray and γ-ray signatures of Neutron Stars versus Black Holes, Stanford Univ. preprint (1992).

    Google Scholar 

  22. Wiese, W. L., Smith, M. W. & Glennon, B. M. Atomic Transition Probabilities NSRSDS-NBS 4, Vol. 1 (1966).

    Book  Google Scholar 

  23. Gurtovenko, E. A. & Kostik, R. I. Astr. Astrophys. Suppl. 46, 239–248 (1981).

    Article  CAS  ADS  Google Scholar 

  24. Kurucz, R. L. & Peytremann, E. A. Smithsonian Astrophysical Observatory Rep. No. 362 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, E., Rebolo, R., Casares, J. et al. High lithium abundance in the secondary of the black-hole binary system V404 Cygni. Nature 358, 129–131 (1992). https://doi.org/10.1038/358129a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358129a0

  • Springer Nature Limited

This article is cited by

Navigation