Skip to main content
Log in

Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE spatial and luminosity distribution of γ-ray bursts as observed by the BATSE instrument on the Compton Gamma Ray Observatory1,2 provides support for the revival of the idea3,4 that the burst sources are at cosmological distances5. I present here a new model for γ-ray bursts at cosmological distances, based on the formation of rapidly rotating neutron stars with surface magnetic fields of the order of 1015. Such objects could form by the gravitational collapse of accreting white dwarfs with anomalously high magnetic fields in binaries, as in magnetic cataclysmic binaries. Once formed, such rapidly rotating and strongly magnetized neutron stars would lose their rotational kinetic energy catastrophically, on a timescale of seconds or less: rotation of the magnetic field creates a strong electric field, and hence an electron–positron plasma, which I show to be optically thick and in quasi-thermodynamic equilibrium. This plasma flows away from the neutron star at relativistic speeds, and X-ray and γ-ray emission at the photosphere of this relativistic wind may then reproduce the observational characteristics of a γ-ray burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fishman, G. J. et al. Proc. 2nd Gamma Ray Observatory Science Workshop (in the press).

  2. Meegan, C. A. et al. Nature 355, 143–145 (1992).

    Article  ADS  Google Scholar 

  3. Prilutski, O. F. & Usov, V. V. Astrophys. Space Sci. 34, 395–401 (1975).

    Article  ADS  Google Scholar 

  4. Usov, V. V. & Chibisov, G. V. Soviet Astr. 19, 115–116 (1975).

    ADS  Google Scholar 

  5. Paczynski, B. Acta astr. 41, 257–267 (1991).

    ADS  CAS  Google Scholar 

  6. Schmidt, G. D. & Liebert, J. Astrophys. Space Sci. 131, 549–557 (1987).

    Article  ADS  Google Scholar 

  7. Latter, W. B., Schmidt, G. D. & Green, R. F. Astrophys. J. 320, 308–314 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Lightman, A. P. & Grindlay, J. E. Astrophys. J. 262, 145–152 (1982).

    Article  ADS  Google Scholar 

  9. Manchester, R. N. & Taylor, J. H. Astr. J. 86, 1953–1973 (1981).

    Article  ADS  Google Scholar 

  10. Lamb, F. K., Aly, J.-J., Cook, M. C. & Lamb, D. Q. Astrophys. J. 274, L71–L75 (1983).

    Article  ADS  Google Scholar 

  11. Friedman, J. L. Phys. Rev. 51, L11–L18 (1983).

    ADS  Google Scholar 

  12. Pacini, F. Nature 219, 145–147 (1968).

    Article  ADS  Google Scholar 

  13. Ostriker, J. P. & Gunn, J. E. Astrophys. J. 157, 1395–1417 (1969).

    Article  ADS  Google Scholar 

  14. Arons, J. in Proc. Workshop Plasma Astrophysics, ESA SP-161, 273–286 (European Space Agency, Varenna, 1981).

    Google Scholar 

  15. Michel, F. C. Rev. mod. Phys. 54, 1–66 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Chandrasekhar, S. Astrophys. J. 161, 571–578 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  17. Sturrock, P. A. Astrophys. J. 164, 529–556 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Ruderman, M. A. & Sutherland, P. G. Astrophys. J. 196, 51–72 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Schwinger, J. Phys. Rev. 82, 664–672 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  20. Harding, A. K. Phys. Rep. 206, 327–391 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Machabeli, G. Z. & Usov, V. V. Soviet. Astr. Lett. 15, 393–397 (1989).

    ADS  Google Scholar 

  22. Adler, S. L. Ann. Phys. 67, 599–647 (1971).

    Article  ADS  Google Scholar 

  23. Usov, V. V. & Shabad, A. E. Sov. Astr. Lett. 9, 212–214 (1983).

    ADS  Google Scholar 

  24. Ochelkov, Yu. P. & Usov, V. V. Astrophys. Space Sic. 96, 55–81 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Erber, T. Rev. mod. Phys. 38, 626–647 (1966).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Shabad, A. E. & Usov, V. V. Nature 295, 215–217 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Cheng, A. F. & Ruderman, M. A. Astrophys. J. 214, 598–606 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Paczynski, B. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Goodman, J. Astrophys. J. 308, L47–L50 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Shemi, A. & Piran, T. Astrophys. J. 365, L55–L58 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Cavallo, G. & Rees, M. J. Mon. Not. R. astr. Soc. 183, 359–365 (1978).

    Article  ADS  CAS  Google Scholar 

  32. Heuter, G. F. & Lingenfelter, R. E. in Positron–Electron Pairs in Astrophysics (eds Burns, M. L.,Harding, A. K. & Ramaty, R.) 89–93 (American Institute of Physics, New York, 1983).

    Google Scholar 

  33. Horstman, H. M. & Cavallo, G. Astr. Astrophys. 122, 119–123 (1983).

    ADS  CAS  Google Scholar 

  34. Shaham, J. J. Phys. 41, C2-9–C2-23 (1980).

    Google Scholar 

  35. Usov, V. V. Astrophys. Space Sci. 107, 191–197 (1984).

    Article  ADS  CAS  Google Scholar 

  36. Dermer, C. D. Phys. Rev. Lett. 68, 1799–1802 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uso, V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 357, 472–474 (1992). https://doi.org/10.1038/357472a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357472a0

  • Springer Nature Limited

This article is cited by

Navigation