Skip to main content

Advertisement

Log in

Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AIDS, caused by human immunodeficiency virus (HIV), is one of the world's most serious health problems, with current protocols being inadequate for either prevention or successful long-term treatment. In retroviruses such as HIV, the enzyme reverse tran-scriptase copies the single-stranded RNA genome into double-stranded DNA that is then integrated into the chromosomes of infected cells. Reverse transcriptase is the target of the most widely used treatments for AIDS, 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxyinosine (ddl), but resistant strains of HIV-1 arise in patients after a relatively short time1,2. There are several non-nucleoside inhibitors of HIV-1 reverse transcriptase3–6, but resistance to such agents also develops rapidly7. We report here the structure at 7 Å resolution of a ternary complex of the HIV-1 reverse transcriptase heterodimer, a monoclonal antibody Fab fragment8, and a duplex DNA template-primer. The double-stranded DNA binds in a groove on the surface of the enzyme. The electron density near one end of the DNA matches well with the known structure of the HIV-1 reverse transcriptase RNase H domain12. At the opposite end of the DNA, a mercurated derivative of UTP has been localized by difference Fourier methods, allowing tentative identification of the polymerase nucleoside triphosphate binding site. We also determined the structure of the reverse transcriptase/Fab complex in the absence of template-primer to compare the bound and free forms of the enzyme. The presence of DNA correlates with movement of protein electron density in the vicinity of the putative template-primer binding groove. These results have important implications for developing improved inhibitors of reverse transcriptase for the treatment of AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larder, B. A. & Kemp, S. D. Science 246, 1155–1158 (1989).

    Article  ADS  CAS  Google Scholar 

  2. St Clair, M. H. et al. Science 253, 1557–1559 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Merluzzi, V. J. et al. Science 250, 1411–1413 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Pauwels, R. et al. Nature 343, 470–474 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Baba, M. et al. Proc. natn. Acad. Sci. U.S.A. 88, 2356–2360 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Goldman, M. E. et al. Proc. natn. Acad. Sci. U.S.A. 88, 6863–6867 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Nunberg, J. H. et al. J. Virol. 65, 4887–4892 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferris, A. L. et al. Virology 175, 456–464 (1990).

    Article  CAS  Google Scholar 

  9. Ratner, L. et al. Nature 313, 277–284 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Sanchez-Pescador, R. et al. Science 227, 484–492 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S. & Alizon, M. Cell 40, 9–17 (1985).

    Article  CAS  Google Scholar 

  12. Davies, J. F., Hostomska, Z., Hostomsky, Z., Jordan, S. R. & Matthews, D. A. Science 252, 88–95 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Yang, W., Hendrickson, W. A., Crouch, R. J. & Satow, Y. Science 249, 1398–1405 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Nakamura, H. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11535–11539 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Furfine, E. S. & Reardon, J. E. J. biol. Chem. 266, 406–412 (1991).

    CAS  PubMed  Google Scholar 

  16. Jacobo-Molina, A. et al. Proc. natn. Acad. Sci. U.S.A. 88, 10895–10899 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Hizi, A., Shaharabany, M., Tal, R. & Hughes, S. H. J. biol. Chem. 267, 1293–1297 (1992).

    CAS  PubMed  Google Scholar 

  18. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  19. Furey, W. & Swaminathan, S. Am. crystallogr. Assoc. Mtg. Abstr. Ser. 2 18, 73 (1990).

    Google Scholar 

  20. Rould, M. A., Perona, J. J., Soll, D. & Steitz, T. A. Science 246, 1135–1142 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Cambillau, C. & Horjales, E. J. molec. Graphics 5, 174 (1987).

    Article  CAS  Google Scholar 

  22. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjelgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, E., Jacobo-Molina, A., Nanni, R. et al. Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations. Nature 357, 85–89 (1992). https://doi.org/10.1038/357085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357085a0

  • Springer Nature Limited

This article is cited by

Navigation