Skip to main content
Log in

Three-dimensional motion in the radio jet of the binary system R Aquarii

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

R AQUARII is a symbiotic binary system surrounded by a complex extended optical nebulosity1. At radio and optical wavelengths a jet is seen to emerge from the central binary system2,3. We have observed R Aqr using the Very Large Array. Comparison with earlier radio observations shows that five out of six bright components in the radio jet have moved. One radio component has the same proper motion as the optical Mira, the primary star of the binary. At a distance of 200 pc (refs 1,4), the proper motions of the other components correspond to a tangential velocity of 44 to 160 km s-l with respect to the Mira. By combining these measurements with radial velocity determinations, we obtain a true three-dimensional velocity map of the radio jet, provided only that the observed proper motions indeed correspond to physical motions of emitting material. Our results rule out the possibility that the radio components in the jet were formed in a single explosive event, and suggest instead that they are 'bullets' ejected at ∼20-yr intervals into a narrow cone. Alternatively, if the components move along the jet and are accelerated during the whole of their passage through the inner 7 arcsec (1,400 AU) of the system, ejection at ∼40-yr intervals would lead to the disposition observed at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solf, J. & Ulrich, H. Astr. Astrophys., 148, 274–288 (1985).

    ADS  CAS  Google Scholar 

  2. Sopka, R. J., Herbig, G., Kafatos, M. & Michalitsianos, A. G. Astrophys. J. 258, L35–39 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Spergel, D. N., Giuliani, J. L. Jr & Knapp, G. R. Astrophys. J. 275, 330–341 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Whitelock, P. A. Publs. astr. Soc. Pacif. 99, 573–591 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Gregory, P. C. & Seaquist, E. R. Nature 247, 532–534 (1974).

    Article  ADS  Google Scholar 

  6. Bowers, P. F. & Kundu, M. R. Astr. J. 84, 791–794 (1979).

    Article  ADS  Google Scholar 

  7. Ghigo, F. D. & Cohen, N. L. Astrophys. J. 245, 988–991 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Herbig, G. H. IAU Circ. No. 3535 (1980).

  9. Wallerstein, G. & Greenstein, J. L. Publs astr. Soc. Pacif. 92, 275–283 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Kafatos, M., Hollis, J. M. & Michalitsianos, A. G. Astrophys. J. 267, L103–107 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Hollis, J. M., Kafatos, M. & Michalitsianos, A. G. & McAlister, H. A. Astrophys. J. 289, 765–773 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Hollis, J. M., Michalitsianos, A. G., Kafatos, M., Wright, M. C. H. & Welch, W. J. Astrophys, J. 309, L53–57 (1986).

  13. Paresce, F., Burrows, C. & Horne, K. Astrophys. J. 329, 318–325 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Burgarella, D. & Paresce, F. Astrophys. J. 370, 590–596 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lépine, J. R. D., LeSqueren, A. M. & Scalise, E. Jr Astrophys. J. 225, 869–879 (1978).

    Article  ADS  Google Scholar 

  16. Zuckerman, B. Astrophys. J. 230, 442–448 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Spencer, J. H. et al. Astr. J. 86, 392–409 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Mauron, N., Nieto, J. L., Picat, J. P., Lelièvre, G. & Sol, H. Astr. Astrophys., 142, L13–15 (1985).

    ADS  Google Scholar 

  19. Hollis, J. M., Oliversen, R. J., Kafatos, M., Michalitsianos, A. G. & Wagner, R. M. Astrophys. J. 377, 227–234 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Hollis, J. M. et al. Astrophys. J. 361, 663–666 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Smithsonian Astrophysical Observatory Star Catalogue (US Government Printing Offices, Washington DC, 1966).

  22. Kafatos, M., Michalitsianos, A. G. & Hollis, J. M. Astrophys. J. Suppl. 62, 853–874 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Willson, L. A., Garnavich, P. & Mattei, J. A. IAU Bull. Variable Stars. No. 1961 (1981).

  24. Paresce, F. et al Astrophys. J. 369, L67–70 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Zensus, A. in Variability in Blazars (Cambridge University Press, in the press).

  26. Morgan, B. Ann. Rev. Astr. Astrophys. 22, 507–537 (1984).

    Article  ADS  Google Scholar 

  27. Kafatos, M., Hollis, J. M., Yusef-Zadeh, F., Michalitsianos, A. G. & Elitzur, M. Astrophys. J. 346, 991–996 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehto, H., Johnson, D. Three-dimensional motion in the radio jet of the binary system R Aquarii. Nature 355, 705–707 (1992). https://doi.org/10.1038/355705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355705a0

  • Springer Nature Limited

This article is cited by

Navigation