Skip to main content
Log in

Isotope effect on superconductivity in Rb3C60

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE surprisingly high transition temperatures (Tc) for superconductivity in alkali-meta-doped C60 has spurred wide interest in understanding its mechanism1–6. Recently the increase in Tc with lattice constant was demonstrated for these materials6, and was interpreted as resulting from the corresponding increase in the density of states at the Fermi level. According to the standard (BCS) theory of superconductivity, the other important factor controlling Tc is the phonon that mediates electron pairing. To test whether this factor plays a part for the C60 superconductors, we prepared C60 containing various amounts of 13C, which we then doped with rubidium to give Rb3C60. Measurements of diamagnetic shielding and Meissner effect show that Tc decreases as the 13C content increases, as expected within the context of BCS-like phonon-mediated pairing; but the dependence on the mass is stronger than for most electron-phonon superconductors where Tcm−α with α ≤0.5. Instead, the exponent a has the remarkably large value of 1.4±0.5. Regardless of the interpretation of this value, it is clear that phonons have an important role in the origin of superconductivity in doped C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hebard, A. F. et al. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Holczer, K. et al. Science 252, 1154–1157 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Rosseinsky, M. J. et al. Phys. Rev. Lett. 66, 2830–2832 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Tanigaki, K. et al. Nature 352, 222–223 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Kelly, S. P., Chen, C.-C. & Ueber, C. M. Nature 352, 223–225 (1991).

    Article  ADS  Google Scholar 

  6. Fleming, R. M. et al. Nature 352, 787–788 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kratchmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1991).

    Article  ADS  Google Scholar 

  8. Ebbesen, T. W., Tabuchi, C. & Tanigaki, K. Chem. Phys. Lett. (in the press).

  9. Welp, U., Kwok, W. K., Crabtree, G. W., Vanderroot, K. G. & Lin, J. Z. Phys. Rev. Lett. 62, 1908 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Barbee, T. W. III, Cohen, M. L. & Penn, D. R. Phys. Rev. B44, 4473 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Bourne, L. C., Zettl, A., Barbee, T. W. III & Cohen, M. L. Phys. Rev. B36, 3990–3993 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Zhang, Z., Chen, C.-C., Kelty, S. P., Dai, H. & Lieber, C. M. Nature 353, 333–335 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Deutscher, G. & Muller, K. A. Phys. Rev. Lett. 59, 1745 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Holczer, K. et al. Phys. Rev. Lett. 67, 271 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Tsai, J. S. et al. Phys. Rev. (submitted).

  16. Oshiyama, A. & Saito, S. Phys. Rev. Lett. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbesen, T., Tsai, J., Tanigaki, K. et al. Isotope effect on superconductivity in Rb3C60. Nature 355, 620–622 (1992). https://doi.org/10.1038/355620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355620a0

  • Springer Nature Limited

This article is cited by

Navigation