Skip to main content
Log in

Tit for tat in heterogeneous populations

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE 'iterated prisoner's dilemma' is now the orthodox paradigm for the evolution of cooperation among selfish individuals. This viewpoint is strongly supported by Axelrod's computer tournaments, where 'tit for tat' (TFT) finished first1. This has stimulated interest in the role of reciprocity in biological societies1–8. Most theoretical investigations, however, assumed homogeneous populations (the setting for evolutionary stable strategies9,10) and programs immune to errors. Here we try to come closer to the biological situation by following a program6 that takes stochasticities into account and investigates representative samples. We find that a small fraction of TFT players is essential for the emergence of reciprocation in a heterogeneous population, but only paves the way for a more generous strategy. TFT is the pivot, rather than the aim, of an evolution towards cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).

    MATH  Google Scholar 

  2. Axelrod, R. & Hamilton, W. D. Science 211, 1390–1396 (1981).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Trivers, R. Social Evolution (Cummings, Menlo Park, 1985).

    Google Scholar 

  4. Axelrod, R. & Dion, D. Science 242, 1385–1390 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Boyd, R. & Lorberbaum, J. P. Nature 327, 58–59 (1987).

    Article  ADS  Google Scholar 

  6. May, R. M. Nature 327, 15–17 (1987).

    Article  ADS  Google Scholar 

  7. Milinski, M. Nature 325, 434–435 (1987).

    Article  ADS  Google Scholar 

  8. Wilkinson, G. S. Nature 308, 181–184 (1984).

    Article  ADS  Google Scholar 

  9. Maynard Smith, J. Evolution and the Theory of Games (Cambridge University Press, UK, 1982).

    Book  Google Scholar 

  10. Hofbauer, J. & Sigmund, K. The Theory of Evolution and Dynamical Systems (Cambridge University Press, UK, 1988).

    MATH  Google Scholar 

  11. Axelrod, R. in Genetic Algorithms and Simulated Annealing (ed. Davis, D.) (Pitman, London, 1987).

    Google Scholar 

  12. Selten, R. Internat. J. Game Th. 4, 25–55 (1975).

    Article  Google Scholar 

  13. Boyd, R. J. theor. Biol. 136, 47–56 (1989).

    Article  CAS  Google Scholar 

  14. Nowak, M. & Sigmund, K. J. theor. Biol. 137, 21–26 (1989).

    Article  CAS  Google Scholar 

  15. Nowak, M. & Sigmund, K. Acta appl. Math. 20, 247–265 (1990).

    Article  MathSciNet  Google Scholar 

  16. Nowak, M. Theor. Pop. Biol. 38, 93–112 (1990).

    Article  Google Scholar 

  17. Molander, P. J. Conflict Resolut. 29, 611–618 (1985).

    Article  Google Scholar 

  18. Lindgren, K. in Artificial Life II (eds Farmer, D. et al.) (Proc. Santa Fe Inst. Stud., Addison-Welsey 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, M., Sigmund, K. Tit for tat in heterogeneous populations. Nature 355, 250–253 (1992). https://doi.org/10.1038/355250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355250a0

  • Springer Nature Limited

This article is cited by

Navigation