Skip to main content
Log in

Large-scale superluminal motion in the quasar 3C273

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE quasar 3C273, one of the first discovered1, is optically the brightest example of a source with a one-sided jet. It was also the first object to display apparent superluminal motion on parsec scales2, a phenomenon attributed to relativistic effects on the appearance of a jet moving close to the line of sight3,4. The same explanation allows an intrinsically similar 'counter-jet', moving at high speed in the opposite direction, to be dimmed to invisibility. We have made observations at 1.7 GHz, using very-long-baseline interferometry with a global network of 16 radiotelescopes, resulting in a high-dynamic-range map of the jet with a ratio of peak brightness to r.m.s. noise level of 16,000:1. We fail to see a counter-jet, a result which is just barely consistent with the standard model of a superluminal jet. The jet extends out to 220 pc, and some models5,6 require that the relativistic bulk flow should continue along its entire length. Comparison with an earlier image shows that superluminal motion extends out to at least 120 pc, three times farther than previously noted7. Because different components emerge with different velocities7,8, a third epoch of observations is needed to determine if any deceleration has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt, M. Nature 197, 1040 (1963).

    Article  ADS  Google Scholar 

  2. Pearson, T. J. et al. Nature 290, 365–368 (1981).

    Article  ADS  Google Scholar 

  3. Blandford, R. D. & Konigl, A. Astrophys. J. 232, 34–48 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Begelman, M. C., Blandford, R. D. & Rees, M. J. Rev. mod. Phys. 56, No. 2(1), 255–351 (1984).

    ADS  Google Scholar 

  5. Conway, R. G., Davis, R. J., Foley, A. R. & Ray, T. P. Nature 294, 540–542 (1981).

    Article  ADS  Google Scholar 

  6. Bridle, A. H. & Perley, R. A. Ann. Rev. Astr. Astrophys. 22, 319–358 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Zensus, J. A., Bååth, L. B., Cohen, M. H. & Nicolson, G. D. Nature 334, 410–412 (1988).

    Article  ADS  Google Scholar 

  8. Unwin, S. C. et al. Astrophys. J. 280, 109–119 (1985).

    Article  ADS  Google Scholar 

  9. Browne, I. W. A. et al. Nature 299, 788–793 (1982).

    Article  ADS  Google Scholar 

  10. Davis, R. J., Muxlow, T. W. B. & Conway, R. G. Nature 318, 343–345 (1985).

    Article  ADS  Google Scholar 

  11. Perley, R. A. Proc. IAU Symp. 110, 153–156 (1984).

    ADS  Google Scholar 

  12. Blandford, R. D. & Rees, M. J. Mon. Not. R. astr. Soc. 169, 395–415 (1974).

    Article  ADS  Google Scholar 

  13. Scheuer, P. A. G. Proc. IAU Symp. 110, 197–205 (1984).

    ADS  Google Scholar 

  14. Schwab, F. R. & Cotton, W. D. Astr. J. 88, 688–694 (1983).

    Article  ADS  Google Scholar 

  15. Cornwell, T. J. & Wilkinson, P. N. Mon. Not. R. astr. Soc. 196, 1067–1086 (1981).

    Article  ADS  Google Scholar 

  16. Muxlow, T. W. B. & Wilkinson, P. N. Mon. Not. R. astr. Soc. 251, 54–62 (1991).

    Article  ADS  Google Scholar 

  17. Walker, R. C., Walker, M. A. & Benson, J. M. Astrophys. J. 335, 668–676 (1988).

    Article  ADS  Google Scholar 

  18. Garrington, S. T., Leahy, J. P., Conway, R. G. & Laing, R. A. Nature 331, 147–149 (1988).

    Article  ADS  Google Scholar 

  19. Laing, R. A. Nature 331, 149–151 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R., Unwin, S. & Muxlow, T. Large-scale superluminal motion in the quasar 3C273. Nature 354, 374–376 (1991). https://doi.org/10.1038/354374a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354374a0

  • Springer Nature Limited

This article is cited by

Navigation