Skip to main content
Log in

Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SKELETAL muscle is unusual in that 70–85% of resting membrane conductance is carried by chloride ions1. This conductance is essential for membrane-potential stability, as its block by 9-anthracene-carboxylic acid and other drugs causes myotonia2,3. Fish electric organs are developmentally derived from skeletal muscle, suggesting that mammalian muscle may express a homologue of the Torpedo mamorataelectroplax chloride channel4,5. We have now cloned the complementary DNA encoding a rat skeletal muscle chloride channel by homology screening to the Cl channel from Torpedo4 (Fig. la). It encodes a 994-amino-acid protein which is about 54% identical to the Torpedo channel and is predominantly expressed in skeletal muscle. Messenger RNA amounts in that tissue increase steeply in the first 3–4 weeks after birth, in parallel with the increase in muscle Cl conductance6. Expression from cRNA in Xenopus oocytes leads to 9-anthracene-carboxylic acid-sensitive currents with time and voltage dependence typical for macroscopic muscle Cl conductance. This and the functional destruction of this channel in mouse myotonia7suggests that we have cloned the major skeletal muscle chloride channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretag, A. H. Physiol. Rev. 67, 618–724 (1987).

    Article  CAS  Google Scholar 

  2. Rüdel, R. & Lehmann-Horn, F. Physiol. Rev. 65, 310–356 (1985).

    Article  Google Scholar 

  3. Bryant, S. H. & Morales-Aguilera, A. J. Physiol., Lond. 219, 367–383 (1971).

    Article  CAS  Google Scholar 

  4. Jentsch, T. J., Steinmeyer, K. & Schwarz, G. Nature 348, 510–514 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Miller, C. & Richard, E. A. in Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells (eds Alvarez-Leefsmans, F. J. & Russel, J. M.) 383–405 (Plenum, New York, 1990).

    Book  Google Scholar 

  6. Conte Camerino, D., De Luca, A., Mambrini, M. & Vrbovà, G. Pflügers Arch. 413, 568–570 (1989).

    Article  CAS  Google Scholar 

  7. Steinmeyer, K. et al. Nature 354, 304–308 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  9. Kimes, B. W. & Brandt, B. L. Expl Cell Res. 98, 349–366 (1976).

    Article  CAS  Google Scholar 

  10. Cooperman, S. S. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8721–8725 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Trimmer, J. S. et al. Neuron 3, 33–49 (1989).

    Article  CAS  Google Scholar 

  12. Trimmer, J. S., Cooperman, S. S., Agnew, W. S. & Mandel, G. Devl Biol. 142, 360–367 (1990).

    Article  CAS  Google Scholar 

  13. Kallen, R. L. et al. Neuron 4, 233–242 (1990).

    Article  CAS  Google Scholar 

  14. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Witzemann, V., Barg, B., Criado, M., Stein, E. & Sakmann, B. FEBS Lett. 242, 419–424 (1989).

    Article  CAS  Google Scholar 

  16. Palade, P. T. & Barchi, R. L. J. gen. Physiol. 69, 325–342 (1977).

    Article  CAS  Google Scholar 

  17. Miller, C. Phil. Trans. R. Soc. B 299, 401–411 (1982).

    Article  CAS  Google Scholar 

  18. Miller, C. & White, M. M. Proc. natn. Acad. Sci. U.S.A. 81, 2772–2775 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Bauer, C. K., Steinmeyer, K., Schwarz, J. R. & Jentsch, T. J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  20. Blatz, A. L. & Magleby, K. L. Biophys. J. 43, 237–241 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Blatz, A. L. & Magleby, K. L. Biophys. J. 47, 119–123 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  23. Colman, A. in Transcription and Translation (eds Hames, B. D. & Higgins, S. J.) 271–302 (IRL, Oxford, 1984).

    Google Scholar 

  24. Higuchi, R. in PCR Technology (ed. Erlich, H. A.) 61–70 (Stockton, New York, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, K., Ortland, C. & Jentsch, T. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354, 301–304 (1991). https://doi.org/10.1038/354301a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354301a0

  • Springer Nature Limited

This article is cited by

Navigation