Skip to main content

Advertisement

Log in

MHC class I surface expression in embryo-derived cell lines inducible with peptide or interferon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IT has long been recognized that the absence of expression of products of the major histocompatibility complex (MHC) during early development might allow the fetus to escape recognition by maternal lymphocytes. In addition to the MHC class I heavy chain and β2-microglobulin, antigenic peptide is an essential structural component of the class I molecule1–5. Indeed, there is evidence that MHC-linked genes encoding peptide transporter molecules6–10 and possibly components of a proteolytic complex11,12 are necessary for MHC class I assembly and stability at the cell surface. Here we demonstrate that embryonic cells in general show a defect in MHC class I assembly. Surface expression was rescued in the presence of an appropriate antigenic peptide, or by treatment with interferon. Consistent with this, HAM1 (ref. 9) messenger RNA was not constitutively expressed, but was inducible by interferon, and during differentiation in vitro. Thus, tolerance of the fetal allograft may in part be controlled at the level of peptide-dependent MHC class I assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorkman, P. J. et al. Nature 329, 506–512 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Townsend, A. et al. Nature 340, 443–448 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Cerundolo, V. et al. Nature 345, 449–452 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Townsend, A. et al. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  5. Silver, M. L., Parker, K. C. & Wiley, D. C. Nature 350, 619–622 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Deverson, E. V. et al. Nature 348, 738–741 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Trowsdale, J. et al. Nature 348, 741–744 (1991).

    Article  ADS  Google Scholar 

  8. Spies, T. et al. Nature 348, 744–747 (1991).

    Article  ADS  Google Scholar 

  9. Monaco, J. J., Cho, S. & Attaya, M. Science 250, 1723–1726 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Spies, T. & DeMars, R. Nature 351, 323–324 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Monaco, J. J. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 79, 3001–3005 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Monaco, J. J. & McDevitt, H. O. Nature 309, 797–799 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Silverman, T. et al. J. Immun. 140, 4378–4387 (1988).

    CAS  PubMed  Google Scholar 

  14. Bikoff, E. K., Otten, G. R. & Robertson, E. J. Eur. J. Immun. 21, 1997–2004 (1991).

    Article  CAS  Google Scholar 

  15. Takahashi, H. et al. Proc. natn. Acad. Sci. U.S.A. 85, 3105–3109 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Croce, C. M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 5754–5758 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Morello, D. et al. Nature 296, 260–262 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Rosenthal, A., Wright, S., Cedar, H., Flavell, R. & Grosveld, F. Nature 310, 415–418 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Morello, D., Duprey, P., Israel, A. & Babinet, C. Immunogenetics 22, 441–452 (1985).

    Article  CAS  Google Scholar 

  20. Hedley, M. L., Drake, B. L., Head, J. R., Tucker, P. W. & Forman, J. J. Immun. 142, 4046–4053 (1989).

    CAS  PubMed  Google Scholar 

  21. Ozato, K., Wan, Y. J. & Orrison, B. M. Proc. natn. Acad. Sci. U.S.A. 82, 2427–2431 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Jaffe, L., Jeannotte, L., Bikoff, E. K. & Robertson, E. J. J. Immun. 145, 3474–3482 (1990).

    CAS  PubMed  Google Scholar 

  23. Jaffe, L., Robertson, E. J. & Bikoff, E. K. J. Immun. (in the press).

  24. Margulies, D. H. et al. J. Immun. 130, 463–470 (1983).

    CAS  Google Scholar 

  25. Bernstine, E. G., Hooper, M. L., Grandchamp, S. & Ephrussi, B. Proc. natn. Acad. Sci. U.S.A. 70, 3899–3903 (1973).

    Article  ADS  CAS  Google Scholar 

  26. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Gunning, P., Leavitt, J., Muscat, G., Ng, S. Y. & Kedes, L. Proc. natn. Acad. Sci. U.S.A. 84, 4831–4835 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Ljunggren, H. G. et al. Nature 346, 476–480 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Robertson, E. J. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 71–112 (IRL, Oxford, 1987).

    Google Scholar 

  30. Rudnicki, M. A. & McBurney, M. W. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 19–49 (IRL, Oxford, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikoff, E., Jaffe, L., Ribaudo, R. et al. MHC class I surface expression in embryo-derived cell lines inducible with peptide or interferon. Nature 354, 235–238 (1991). https://doi.org/10.1038/354235a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354235a0

  • Springer Nature Limited

This article is cited by

Navigation