Skip to main content
Log in

Origin of the shuttle glow

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A GLOW around exposed surfaces of the space shuttle facing the direction of orbital motion was first seen in 19831,2. This 'shuttle glow' extends about 10cm from the surfaces, is peaked in wavelength at 680 nm, and within a resolution of about 3.5 nm forms a continuum3–6. Similar anomalies were reported in rocket experiments as long ago as 19587 and in more recent space-based studies8. Apart from its interest as an unusual physical phenomenon, shuttle glow may be a source of interference in space-based spectroscopy; anomalous airglow observations made by the Atmospheric Explorer spacecraft9,10 have been attributed to it. The most likely explanation seems to be the recombination of fast oxygen atoms in the upper atmosphere with NO absorbed on the shuttle's surface. This forms excited NO2, which radiates light as it desorbs6,7. On a recent shuttle mission (STS-39) four gases, NO, CO2, Xe and Ne were released for a plasma experiment. Unintentionally, enough gas was scattered onto the surfaces of the shuttle tail that when NO was released a much more intense version of shuttle glow was observed. The other gases did not affect the normal shuttle glow. Under normal conditions the adsorbed NO that causes the glow probably comes either from the ambient atmosphere6 or from reactions in exhaust gases from the shuttle thrusters14,15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks, P. M., Williamson, P. R. & Raitt, W. J. Geophys. Res. Lett. 10, 118–121 (1983).

    Article  ADS  Google Scholar 

  2. Mende, S. B., Garriott, O. K. & Banks, P. M. Geophys. Res. Lett. 10, 122–125 (1983).

    Article  ADS  Google Scholar 

  3. Green, B. D., Caledonia, G. E. & Wilkerson, T. D. J. Spacecraft Rochets 22, 500–511 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Murad, E. in Physics of Space Plasmas (1985–1987), Vol. 6 (eds Chang, T. et al.) 147–161 (Scientific, Cambridge, MA, 1987).

    Google Scholar 

  5. Garrett, H. B., Chutjian, A. & Gabriel, S. J. Spacecraft Rockets 25, 321–341 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Swenson, G. R., Mende, S. B. & Clifton, K. S. Geophys. Res. Lett. 12, 97–100 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Heppner, J. P. & Meredith, L. H. J. geophys. Res. 12, 51–65 (1958).

    Article  ADS  Google Scholar 

  8. Torr, M. R., Hays, P. B., Kennedy, B. C. & Walker, J. C. C. Planet. Space Sci. 25, 173–184 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Yee, J. H. & Abreu, V. J. Proc. SPIE Tech. Symp. 338 (ed. Maag, C. R.) 120 (SPIE, Bellingham, 1982).

    Google Scholar 

  10. Yee, J. H., Abreu, V. J. & Dalgarno, A. Geophys. Res. Lett. 11, 1192–1194 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Paulsen, D. E., Sheridan, W. F. & Huffman, R. E. J. chem. Phys. 53, 647–658 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Swenson, G. R., Mende, S. B. & Meyerott, R. E. Nature 323, 519–522 (1986).

    Article  ADS  Google Scholar 

  13. von Zahn, U. & Murad, E. Nature 321, 147–148 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Meyerott, R. E. & Swenson, G. R. Planet. Space Sci. 38, 555–566 (1990).

    Article  ADS  Google Scholar 

  15. Green, B. D., Rawlins, W. T. & Marinelli, W. J. Planet. Space Sci. 34, 879–887 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Caledonia, G. E. et al. Geophys. Res. Lett. 17, 1881–1884 (1990).

    Article  ADS  Google Scholar 

  17. Swenson, G. R., Leone, A., Holtzclaw, K. W. & Caledonia, G. E. J. geophys. Res. 96, 7603–7612 (1991).

    Article  ADS  Google Scholar 

  18. Arnold, G. S. & Coleman, D. J. J. chem. Phys. 88, 7147–7156 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Orient, O. J., Chutjian, A. & Murad, E. Phys. Rev. A41, 4106–4108 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Murad, E., Lai, S. T. & Stair, A. T. Jr J. geophys. Res. 91, 10188–10192 (1986).

    Article  ADS  Google Scholar 

  21. Green, B. D. et al. 26th Aerospace Sciences Meeting Paper AIAA-88-0432 (AIAA, Washington DC, 1988).

  22. Fontijn, A. & Rosner, D. E. J. chem. Phys. 46, 3275–3276 (1967).

    Article  ADS  CAS  Google Scholar 

  23. Golomb, D. & Good, R. E. J. chem. Phys. 49, 4176–4180 (1968).

    Article  ADS  CAS  Google Scholar 

  24. Mende, S. B., Swenson, G. R. & Liewellyn, E. J. Adv. Space Sci. 7, 169–178 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Pickett, J. S., Murphy, G. R., Kurth, W. S., Goertz, C. K. & Shawhan, S. D. J. geophys. Res. A90, 3487–3497 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Caledonia, G. E., Holtzclaw, K. W., Sonenfroh, D. & Krech, R. in Proc. Workshop on Induced Environment of Space Station Freedom (ed. Torr, M. R.) (NASA, Huntsville, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viereck, R., Murad, E., Green, B. et al. Origin of the shuttle glow. Nature 354, 48–50 (1991). https://doi.org/10.1038/354048a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354048a0

  • Springer Nature Limited

Navigation