Skip to main content
Log in

Running energetics in the pronghorn antelope

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h−1, second only to the cheetah (Acionyx jubatus) among land vertebrates1, a possible response to predation in the exposed habitat of the North American prairie2. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h−1 (ref. 1). We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h–1 in an average 32-kg animal3. The resulting range of predicted values, 3.2-5.1 ml O2 kg–1 s−1, far surpasses the predicted maximum aerobic capacity4 of a 32-kg mammal (1.5 ml O2 kg−1s−1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed >20 ms−1 (70 km h−1), attained without unique respiratory-system structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKean, T. A. & Walker, B. Resp. Physiol. 21, 365–370 (1974).

    Article  CAS  Google Scholar 

  2. O'Gara, B. W. Mammal. Species 90, 1–7 (1978).

    Article  Google Scholar 

  3. Garland, T. Jr J. Zool. 199, 157–170 (1983).

    Article  Google Scholar 

  4. Taylor, C. R. et al. Resp. Physiol. 44, 25–37 (1981).

    Article  CAS  Google Scholar 

  5. Rübner, M. Z. für Biol. 19, 535–562 (1883).

    Google Scholar 

  6. Kleiber, M. Hilgardia 6, 315–353 (1932).

    Article  CAS  Google Scholar 

  7. Lechner, A. J. Resp. Physiol. 34, 29–44 (1978).

    Article  CAS  Google Scholar 

  8. Hemmingsen, A. M. Rep. Steno meml Hosp. 4, 7–58 (1950).

    Google Scholar 

  9. Hemmingsen, A. M. Rep. Steno meml Hosp. 9, 7–110 (1960).

    CAS  Google Scholar 

  10. Calder, W. A. III Size, Function and Life History (Harvard University Press, 1984).

    Google Scholar 

  11. Taylor, C. R., Schmidt-Nielsen, K. & Raab, J. L. Am. J. Physiol. 219, 1104–1107 (1970).

    CAS  PubMed  Google Scholar 

  12. Fedak, M. A. & Seeherman, H. J. Nature 282, 713–716 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Tucker, V. A. Am. Scient. 63, 413–419 (1975).

    ADS  CAS  Google Scholar 

  14. Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, 1984).

    Book  Google Scholar 

  15. Wells, D. J. thesis, Univ. Wyoming (1990).

  16. Longworth, K. E., Jones, J. H., Taylor, C. R. & Weibel, E. R. Resp. Physiol. 77, 263–276 (1989).

    Article  CAS  Google Scholar 

  17. Costill, D. L., Fink, W. J. & Pollock, M. L. Med. Sci. Sport 8, 96–100 (1976).

    CAS  Google Scholar 

  18. Lindstedt, S. L., Wells, D. J., Jones, J. H., Hoppeler, H. & Thronson, H. A. Jr Int. J. Sports Med. 9, 210–227 (1988).

    Article  CAS  Google Scholar 

  19. Carpenter, R. E. J. exp. Biol. 114, 619–647 (1985).

    Google Scholar 

  20. Thomas, S. P. J. exp. Biol. 63, 273–293 (1975).

    CAS  PubMed  Google Scholar 

  21. Tucker, V. A. J. exp. Biol. 58, 689–709 (1973).

    Google Scholar 

  22. Lasiewski, R. C. Physiol. Zool. 36, 122–140 (1963).

    Article  CAS  Google Scholar 

  23. Epting, R. J. Physiol. Zool. 53, 347–357 (1980).

    Article  Google Scholar 

  24. Casey, M. in Insect Flight (eds Goldsworth, T. Y., Casey, T. M., Goldswothy, G. J. & Wheeler, C. H.) 257–272 (CRC Press, Bocca Raton, Florida, 1989).

    Google Scholar 

  25. Rothe, H. J., Biesel, W. & Nachitgall, W. J. comp. Physiol. 157, 99–109 (1987).

    Article  Google Scholar 

  26. Tucker, V. A. Science 154, 150–153 (1966).

    Article  ADS  CAS  Google Scholar 

  27. Weibel, E. R. & Taylor, C. R. Resp. Physiol. 44, 1–164 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindstedt, S., Hokanson, J., Wells, D. et al. Running energetics in the pronghorn antelope. Nature 353, 748–750 (1991). https://doi.org/10.1038/353748a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353748a0

  • Springer Nature Limited

This article is cited by

Navigation