Skip to main content

Advertisement

Log in

Role of the Drosophila patched gene in positional signalling

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AFTER cellularization of the Drosophila embryo, positional differences within each primordial segment are maintained and elaborated by processes that require cell interactions. The best-documented examples1,2 of such intercellular signalling are the mutual interactions between neighbouring cells expressing the homeodomain protein engrailed3 and the secreted glycoprotein encoded by wingless4, the Drosophila homologue of the murine Wnt-1 gene5. Little is known about the molecular basis of these signalling mechanisms but the activities of several other genes, notably patched and hedgehog, have been implicated in the process1,2. Here we show that the role of patched in positional signalling is permissive rather than instructive, its activity being required to suppress wingless transcription in cells predisposed to express the latter. According to this view, expression of wingless is normally maintained only in those cells receiving an extrinsic signal, encoded by hedgehog, that antagonizes the repressive activity of patched. We suggest that the patched protein may itself be the receptor for this signal, implying that this is an unusual mechanism of ligand-dependent receptor inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez-Arias, A., Baker, N. E. & Ingham, P. W. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  2. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. & O'Farrell, P. H. Nature 332, 604–609 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Fjose, A., McGinnis, W. J. & Gehring, W. J. Nature 313, 284–289 (1985).

    Article  ADS  CAS  Google Scholar 

  4. van den Heuvel, M., Nusse, R., Johnston, P. & Lawrence, P. A. Cell 59, 739–749 (1989).

    Article  CAS  Google Scholar 

  5. Rijsewijk, F. et al. Cell 50, 649–657 (1987).

    Article  CAS  Google Scholar 

  6. DiNardo, S., Kuner, J. M., Theis, J. & O'Farrell, P. H. Cell 43, 59–69 (1985).

    Article  CAS  Google Scholar 

  7. Baker, N. E. EMBO J. 6, 1765–1774 (1987).

    Article  CAS  Google Scholar 

  8. Howard, K. & Ingham, P. Cell 44, 949–957 (1986).

    Article  CAS  Google Scholar 

  9. DiNardo, S. & O'Farrell, P. H. Genes Dev. 1, 1212–1225 (1987).

    Article  CAS  Google Scholar 

  10. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. Nature 331, 73–75 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Nüsslein-Volhard, C. & Wieschaus, E. Nature 287, 795–801 (1980).

    Article  ADS  Google Scholar 

  12. Ingham, P. W. Nature 335, 25–34 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Nakano, Y. et al. Nature 341, 508–513 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Hidalgo, A. & Ingham, P. Development 110, 291–302 (1990).

    CAS  PubMed  Google Scholar 

  15. Martinez-Arias, A. Trends Genet. 5, 262–267 (1989).

    Article  CAS  Google Scholar 

  16. Hooper, J. & Scott, M. P. Cell 59, 751–765 (1989).

    Article  CAS  Google Scholar 

  17. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1985).

    Book  Google Scholar 

  18. Mohler, J. Genetics 120, 1061–1072 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hama, C., Ali, Z. & Kornberg, T. B. Genes Dev. 4, 1079–1093 (1990).

    Article  CAS  Google Scholar 

  20. Thummel, C. S., Boulet, A. M. & Lipshitz, H. D. Gene 74, 445–456 (1988).

    Article  CAS  Google Scholar 

  21. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  22. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingham, P., Taylor, A. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991). https://doi.org/10.1038/353184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353184a0

  • Springer Nature Limited

This article is cited by

Navigation