Skip to main content

Advertisement

Log in

Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE Greenland Sea is particularly important to the world ocean circulation, and potentially to carbon dioxide exchange between the ocean and atmosphere, because it is an area of surface convergence and deep-water formation1–3. Previous investigations indicate that biological productivity is low4,5 in this area, especially in waters remote from the ice edge. During April and early May 1989, however, we observed the development of a massive bloom of the colonial prymnesiophyte Phaeocystis pouchetii across much of the Greenland Sea. From measurements of the rate of removal of nitrate from surface waters, we calculate that the average regional new production was about 40 g C m−2 during the 35-day period of our observations. This rate of new production is approximately equal to that observed in other hyperproductive polar regions, such as the Bering Sea and the Bransfield Strait. Because Phaeocystis blooms seem to be frequent and widespread in polar oceans4,6, our results suggest that the Greenland Sea may be a larger sink of atmospheric carbon dioxide than has been previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, T.-H., Takahashi, T. & Broecker, W. S. Tellus 39, 439–458 (1987).

    Article  Google Scholar 

  2. Anderson, L. G. & Jones, E. P. J. mar. Systems (in the press).

  3. Takahashi, T. et al. J. Rit. Fiskideild. 9, 20–36 (1985).

    Google Scholar 

  4. Baumann, M. E. M. thesis, Univ. of Aachen (1990).

  5. Smith, W. O. Jr & Sakshaug, E. in Polar Oceanography, Part B (ed. Smith, W. O. Jr) 477–525 (Academic, San Diego, 1991).

    Google Scholar 

  6. Wassmann, P., Vernet, M., Mitchell, B. G. & Rey, F. Mar. Ecol. Prog. Ser. 66, 183–195 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Paquette, R. G., Bourke, R. H., Newton, J. F. & Perdue, W. F. J. geophys. Res. 90, 4866–4882 (1985).

    Article  ADS  Google Scholar 

  8. Smith, W. O. Jr, Baumann, M. E. M., Wilson, D. L. & Aletsee, L. J. geophys. Res. 92, 6777–6786 (1987).

    Article  ADS  Google Scholar 

  9. Keene, N. K., Smith, W. O. Jr & Kattner, G. Polar Biol. (in the press).

  10. Codispoti, L. A., Friederich, G. E., Sakamoto, C. M. & Gordon, L. I. J. mar. Systems (in the press).

  11. Jones, E. P., Nelson, D. M. & Treguer, P. in Polar Oceanography, Part B (ed. Smith, W. O. Jr) 407–476 (Academic, San Diego, 1990).

    Book  Google Scholar 

  12. Clarke, R. A. Deep-Sea Res. 37, 1383–1411 (1990).

    Article  ADS  Google Scholar 

  13. Sverdrup, H. U. J. Cons. Explor. Mer 18, 287 (1953).

    Article  Google Scholar 

  14. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  15. Redfield, A. C. Am. Scient. 46, 205–221 (1958).

    CAS  Google Scholar 

  16. Cota, G. F., Smith, W. O. Jr & Mitchell, B. G. Eos 71, 79 (1990).

    Google Scholar 

  17. Smith, W. O. Jr & Harrison, W. G. Deep-Sea Res. (in the press).

  18. Gunkel, J. thesis, Univ. of Kiel (1988).

  19. Stefánsson, U. & Ólafsson, J. J. Rit Fiskideild. (in the press).

  20. Bodungen, B. V., Bauerfeind, E., Koeve, W. & Zeitzschel, B. Eos 71, 65–66 (1990).

    Article  Google Scholar 

  21. Hebbeln, D. & Wefer, G. Nature 350, 409–411 (1991).

    Article  ADS  Google Scholar 

  22. Estep, K. W., Nejstgaard, J. C., Skjoldal, H. R. & Rey, F. Mar. Ecol. Prog. Ser. 67, 235–249 (1990).

    Article  ADS  Google Scholar 

  23. Smith, W. O. Jr & Nelson, D. M. Limnol. Oceanogr. 35, 809–821 (1990).

    Article  ADS  Google Scholar 

  24. Karl, D. M., Tilbrook, B. D. & Tien, G. Deep-Sea Res. (in the press).

  25. Walsh, J. J. et al. Prog Oceanogr. 22, 277–359 (1989).

    Article  ADS  Google Scholar 

  26. Smith, S. L., Smith, W. O. Jr, Codispoti, L. A. & Wilson, D. L. J. mar. Res. 43, 693–707 (1985).

    Article  Google Scholar 

  27. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Keeling, C. D. et al. in Aspects of Climate Variability in the Pacific and the Western Americas (ed. Peterson, D.) 165–363 (American Geophysical Union, Washington DC, 1989).

    Google Scholar 

  29. Watson, A. J., Robinson, C., Robinson, J. E., Williams, P. J. le B. & Fasham, M. J. R. Nature 350, 50–53 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, W., Codispoti, L., Nelson, D. et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352, 514–516 (1991). https://doi.org/10.1038/352514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352514a0

  • Springer Nature Limited

This article is cited by

Navigation