Skip to main content
Log in

Membrane protein association by potential intrarnembrane charge pairs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

THE transmembrane domain of the α chain of the T-cell receptor is responsible both for its assembly with the CD3 δ chain1 and for rapid degradation of the unassembled chain within the endoplasmic reticulum2,3. The determinant for both assembly and degradation is located in a segment of eight residues containing two basic amino acids (Fig. 1). We show here that placement of a single basic residue in the transmembrane domain of the Tac antigen can induce interaction with the CD3 chain, through its transmembrane acidic residue. This interaction is most favoured when the interacting residues are located at the same level in the membrane. The ability to induce protein–protein interaction by placing charge pairs within transmembrane domains suggests an approach to producing artificial dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manolios, N., Bonifacino, J. S. & Klausner, R. D. Science 249, 274–277 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Bonifacino, J. S., Suzuki, C. K. & Klausner, R. D. Science 247, 79–82 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Bonifacino, J. S., Cosson, P. & Klausner, R. D. Cell 63, 503–513 (1990).

    Article  CAS  Google Scholar 

  4. Leonard, W. J. et al. Nature 311, 626–631 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Raulet, D. H. A. Rev. Immun. 7, 175–207 (1989).

    Article  CAS  Google Scholar 

  6. Engelman, D. M., Steitz, T. A. & Goldman, A. A. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

  7. Parsegian, A. Nature 221, 844–846 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Honig, B. G. & Hubbell, W. L. Proc. natn. Acad. Sci. U.S.A. 81, 5412–5416 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Wienands, J., Hombach, J., Radbruch, A., Riesterer, C. & Reth, M. EMB0 J. 9, 449–455 (1990).

    Article  CAS  Google Scholar 

  10. Kinet, J.-P. Cell 57, 351–354 (1989).

    Article  CAS  Google Scholar 

  11. van den Elsen, P., Shepley, B. A., Cho, M. & Terhorst, C. Nature 314, 542–544 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  13. Higuchi, R., Krummel, B. & Saiki, R. K. Nucleic Acid Res. 16, 7351–7367 (1988).

    Article  CAS  Google Scholar 

  14. Samelson, L. E., Harford, J. B. & Klausner, R. D. Cell 43, 223–231 (1985).

    Article  CAS  Google Scholar 

  15. Samelson, L. E., Weissman, A. M., Robey, F. A., Berkowen, I. & Klausner, R. D. J. Immun. 137, 3254–3258 (1986).

    CAS  PubMed  Google Scholar 

  16. Rubin, L. A., Kurman, C. C., Biddison, W. E., Goldman, N. D. & Nelson, D. L. Hybridoma 4, 91–102 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosson, P., Lankford, S., Bonifacino, J. et al. Membrane protein association by potential intrarnembrane charge pairs. Nature 351, 414–416 (1991). https://doi.org/10.1038/351414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351414a0

  • Springer Nature Limited

This article is cited by

Navigation