Skip to main content
Log in

Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The administration of leptin1 to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity2,3. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity4,5,6. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus7 are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism8,9. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (γ-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Generation of transgenic mice expressing EGFP in ARC POMC neurons.
Figure 2: Activation of MOP-Rs hyperpolarizes the EGFP-labelled POMC neurons by opening G-protein-coupled inwardly rectifying potassium channels.
Figure 3: Leptin depolarizes POMC neurons through a nonspecific cation channel, and decreases the GABA-mediated tone onto POMC cells.
Figure 4: The GABA-mediated inputs to POMC cells are from NPY neurons that co-express GABA.

Similar content being viewed by others

References

  1. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994); erratum ibid. 374, 479 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kim, M. S. et al. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J. Clin. Invest. 105, 1005–1011 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haynes, W. G., Morgan, D. A., Djalali, A., Sivitz, W. I. & Mark, A. L. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 33, 542–547 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hakansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C. & Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalra, S. P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20, 68–100 (1999).

    CAS  PubMed  Google Scholar 

  9. Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab. 10, 211–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Glaum, S. R. et al. Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus. Mol. Pharmacol. 50, 230–235 (1996).

    CAS  PubMed  Google Scholar 

  12. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lee, K., Dixon, A. K., Richardson, P. J. & Pinnock, R. D. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits. J. Physiol. (Lond.) 515, 439–452 (1999).

    Article  CAS  Google Scholar 

  14. Shiraishi, T., Sasaki, K., Niijima, A. & Oomura, Y. Leptin effects on feeding-related hypothalamic and peripheral neuronal activities in normal and obese rats. Nutrition 15, 576–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bagnol, D. et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. [online] (cited 25 Aug. 99) <http://www.jneurosci.org/cgi/content/full/19/18/RC26> (1999).

  16. Butler, A. A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Young, J. I. et al. Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice. J. Neurosci. 18, 6631–6640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic, San Diego, 1997).

    Google Scholar 

  19. Kelly, M. J., Loose, M. D. & Ronnekleiv, O. K. Opioids hyperpolarize β-endorphin neurons via µ-receptor activation of a potassium conductance. Neuroendocrinology 52, 268–275 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Slugg, R. M., Hayward, M. D., Ronnekleiv, O. K., Low, M. J. & Kelly, M. J. Effect of the µ-opioid agonist DAMGO on medial basal hypothalamic neurons in β-endorphin knock-out mice. Neuroendocrinology 72, 208–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Powis, J. E., Bains, J. S. & Ferguson, A. V. Leptin depolarizes rat hypothalamic paraventricular nucleus neurons. Am. J. Physiol. 274, R1468–R1472 (1998).

    CAS  PubMed  Google Scholar 

  22. Horvath, T. L., Bechmann, I., Naftolin, F., Kalra, S. P. & Leranth, C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 756, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Broberger, C., Landry, M., Wong, H., Walsh, J. N. & Hokfelt, T. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 66, 393–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. King, P. J., Widdowson, P. S., Doods, H. N. & Williams, G. Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J. Neurochem. 73, 641–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Grieco, P., Balse, P. M., Weinberg, D., MacNeil, T. & Hruby, V. J. d-Amino acid scan of gamma-melanocyte-stimulating hormone: importance of Trp(8) on human MC3 receptor selectivity. J. Med. Chem. 43, 4998–5002 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Csiffary, A., Gorcs, T. J. & Palkovits, M. Neuropeptide Y innervation of ACTH-immunoreactive neurons in the arcuate nucleus of rats: a correlated light and electron microscopic double immunolabeling study. Brain Res. 506, 215–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Horvath, T. L., Naftolin, F. & Leranth, C. GABAergic and catecholaminergic innervation of mediobasal hypothalamic beta-endorphin cells projecting to the medial preoptic area. Neuroscience 51, 391–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank V. J. Hruby for the d-Trp8-γMSH, O. K. Ronnekliev, R. G. Allen and M. R. Brown for antisera and J. T. Williams and J. M. Brundege for advice. This work was supported by the NIH, a Fogarty International Research Collaborative Award, the International Scholar Program of the Howard Hughes Medical Institute, and Agencia Nacional de Promoción Cientifica y Technológica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Cone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowley, M., Smart, J., Rubinstein, M. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001). https://doi.org/10.1038/35078085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078085

  • Springer Nature Limited

This article is cited by

Navigation