Skip to main content

Advertisement

Log in

New measurement of the rate coefficient for the reaction of OH with methane

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

METHANE is an important greenhouse gas, whose concentration in the troposphere is steadily increasing. To estimate the flux of methane into the atmosphere and its atmospheric lifetime, its rate of removal needs to be accurately determined. The main loss process for atmospheric methane is the reaction with the hydroxyl radical OH. We have measured the rate coefficient for this reaction in carefully controlled experiments and found it to be smaller than currently accepted values. Our results indicate a longer CH4 lifetime (by ∼25%) and a correspondingly smaller flux (by ∼100 Tg CH4 yr−1) than previously calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramanathan, V., Cicerone, R. J., Singh, H. B. & Kiehl, J. T. J. geophys. Res. 90, 5547–5566 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Mitchell, J. F. B. Rev. Geophys. 27, 115–139 (1989).

    Article  ADS  Google Scholar 

  3. Steele, L. P. et al. J. atmos. Chem. 5, 125–171 (1987).

    Article  CAS  Google Scholar 

  4. Khalil, M. A. K. & Rasmussen, R. A. Envir. Sci. Technol. 24, 549–553 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Cicerone, R. J. & Oremland, R. S. Global biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Ravishankara, A. R. Ann. Rev. phys. Chem. 39, 367–394 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Davis, D. D., Fischer, S. & Schiff, R. J. chem. Phys. 61, 2213–2219 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Margitan, J. J., Kaufman, F. & Anderson, J. G. Geophys. Res. Lett. 1, 80–81 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Jeong, K. M. & Kaufman, F. J. phys. Chem. 86, 1808–1815 (1982).

    Article  CAS  Google Scholar 

  11. Hancock, G. Measurements of Thermal Rate Data in Modern Gas Kinetics: Theory, Experiment and Applications (eds Pilling, M. J. & Smith, I. W. M., Blackwell, Oxford, 1987).

    Google Scholar 

  12. Vaghjiani, G. L. & Ravishankara, A. R. J. phys. Chem. 93, 1948–1959 (1989).

    Article  CAS  Google Scholar 

  13. Brouard, M., McPherson, M. T. & Pilling, M. J. J. phys. Chem. 93, 4047–4059 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Sworski, T. J. & Hochanadel, C. J. & Ogren, P. J. J. phys. Chem. 84, 129–134 (1980).

    Article  CAS  Google Scholar 

  15. Tsang, W. & Hampson, R. F. J. phys. chem. Ref. Data 15, 1087–1279 (1986).

    Article  ADS  CAS  Google Scholar 

  16. DeMore, W. B. et al. NASA JPL Publ. 90–1 1990.

  17. Atkinson, R. et al. J. phys. chem. Ref. Data 18, 881–1097 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Taylor, J. A., Brasseur, G., Zimmerman, P. & Cicerone, R. J. J. geophys. Res. 96, 3013–3044 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaghjiani, G., Ravishankara, A. New measurement of the rate coefficient for the reaction of OH with methane. Nature 350, 406–409 (1991). https://doi.org/10.1038/350406a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350406a0

  • Springer Nature Limited

This article is cited by

Navigation